The Riemann-Christoffel Tensor

The Riemann-Christoffel tensor has already been featured in our narrative on a number of occasions, but was never at the center of our attention. In Introduction to Tensor Calculus, the Riemann-Christoffel tensor RmijkR_{\cdot mij}^{k} first appeared in Chapter TBD on covariant differentiation, where we immediately concluded that it vanishes owing to the Euclidean nature of the space. As such, it served as a powerful analytical characterization of a Euclidean space, but it was not an interesting object in and of itself. Subsequently, the Riemann-Christoffel tensor reemerged in Chapter TBD in the context of Riemannian spaces where it appeared in full force. However, a Riemannian space is an artificial algebraic construct. As a result, that Chapter did not provide us with any geometric intuition for the Riemann-Christoffel tensor.
Surfaces, on the other hand, are the perfect context for understanding the Riemann-Christoffel tensor. In this book, the Riemann-Christoffel tensor RδαβγR_{\cdot\delta\alpha\beta}^{\gamma} was introduced in Chapter 2, but a detailed discussion was postponed until a later time. That time is now.
The tensor curvature BαβB_{\alpha\beta} and the Riemann-Christoffel tensor RδαβγR_{\cdot\delta\alpha\beta}^{\gamma} are two manifestations of the curvature of a surface, but arise in different ways. The curvature tensor BαβB_{\alpha \beta} arises from the fact that the surface covariant basis Sα\mathbf{S} _{\alpha} undulates with the surface and, as a result, its derivatives αSβ\nabla_{\alpha}\mathbf{S}_{\beta} have normal components that form the curvature tensor BαβB_{\alpha\beta}. Thus, the curvature tensor BαβB_{\alpha \beta}, which does not vanish for any surface other than a plane, is a characteristic of the manner in which the surface is embedded in the ambient space.
The Riemann-Christoffel tensor RδαβγR_{\cdot\delta\alpha\beta }^{\gamma}, on the other hand, arises from within. Namely, it is a manifestation of the fact that surface covariant derivatives do not commute, i.e.
αββα.(7.1)\nabla_{\alpha}\nabla_{\beta}\not =\nabla_{\beta}\nabla_{\alpha}.\tag{7.1}
More specifically, the commutator αββα\nabla_{\alpha}\nabla_{\beta}-\nabla _{\beta}\nabla_{\alpha} applied to a variant TγT^{\gamma} with a surface superscript is governed by the rule
(αββα)Tγ=RδαβγTδ,(7.2)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T^{\gamma}=R_{\cdot\delta\alpha\beta}^{\gamma}T^{\delta},\tag{7.2}
where the Riemann-Christoffel tensor RδαβγR_{\cdot\delta \alpha\beta}^{\gamma} is defined by the equation
Rδαβγ=ΓβδγSαΓαδγSβ+ΓαωγΓβδωΓβωγΓαδω.(7.3)R_{\cdot\delta\alpha\beta}^{\gamma}=\frac{\partial\Gamma_{\beta\delta} ^{\gamma}}{\partial S^{\alpha}}-\frac{\partial\Gamma_{\alpha\delta}^{\gamma} }{\partial S^{\beta}}+\Gamma_{\alpha\omega}^{\gamma}\Gamma_{\beta\delta }^{\omega}-\Gamma_{\beta\omega}^{\gamma}\Gamma_{\alpha\delta}^{\omega}.\tag{7.3}
The Riemann-Christoffel tensor RγδαβR_{\gamma\delta\alpha\beta} with the lowered first index is given by
Rγδαβ=Γγ,βδSαΓγ,αδSβ+Γω,γβΓαδωΓω,γαΓβδω.(7.4)R_{\gamma\delta\alpha\beta}=\frac{\partial\Gamma_{\gamma,\beta\delta} }{\partial S^{\alpha}}-\frac{\partial\Gamma_{\gamma,\alpha\delta}}{\partial S^{\beta}}+\Gamma_{\omega,\gamma\beta}\Gamma_{\alpha\delta}^{\omega} -\Gamma_{\omega,\gamma\alpha}\Gamma_{\beta\delta}^{\omega}.\tag{7.4}
Demonstration of the above identities is left as an exercise.
We must again draw your attention to the crucial intrinsic property of the Riemann-Christoffel tensor. Since the Christoffel symbol can be expressed strictly in terms of the metric tensor and its derivatives, i.e.
Γβγα=12Sαω(SωβSγ+SωγSβSβγSω),(2.57)\Gamma_{\beta\gamma}^{\alpha}=\frac{1}{2}S^{\alpha\omega}\left( \frac{\partial S_{\omega\beta}}{\partial S^{\gamma}}+\frac{\partial S_{\omega\gamma}}{\partial S^{\beta}}-\frac{\partial S_{\beta\gamma}}{\partial S^{\omega}}\right) , \tag{2.57}
the same is true for the Riemann-Christoffel tensor. Meanwhile, as we showed in Section TBD of Introduction to Tensor Calculus, the metric tensor can be calculated by measuring distances of curves within the surface. In other words, the metric tensor can (theoretically) be calculated by intrinsic means without any reference to the precise manner in which the surface is embedded in the ambient space. And, since the Riemann-Christoffel symbol can be expressed in terms of the metric tensor and its derivative, it too can be calculated by intrinsic means. Therefore, the Riemann-Christoffel tensor can carry only partial information about the curvature of the surface. Indeed, any deformation of the surface that preserves in-surface distances between points also preserves the Riemann-Christoffel tensor. For example, a flag made of inextensible material is characterized by a vanishing Riemann-Christoffel tensor regardless of its shape.
(7.5)
Meanwhile, the flag is decidedly not flat and, correspondingly, the curvature tensor BαβB_{\alpha\beta} does not vanish. Thus, clearly, the curvature tensor BαβB_{\alpha\beta} carries at least some information not contained in the Riemann-Christoffel tensor. But what about the inverse: is there any information in the Riemann-Christoffel RδαβγR_{\cdot\delta\alpha\beta}^{\gamma} tensor not contained in the curvature tensor? The answer, provided by the Gauss equations, is no. As we have already stated on a number of occasions, the Gauss equations read
BαγBβδBβγBαδ=Rαβγδ(7.38)B_{\alpha\gamma}B_{\beta\delta}-B_{\beta\gamma}B_{\alpha\delta}=R_{\alpha \beta\gamma\delta} \tag{7.38}
and therefore tells us that the Riemann-Christoffel tensor can be constructed from the information contained in the curvature tensor.
From the equation
Rγδαβ=Γγ,βδSαΓγ,αδSβ+Γω,γβΓαδωΓω,γαΓβδω,(7.4)R_{\gamma\delta\alpha\beta}=\frac{\partial\Gamma_{\gamma,\beta\delta} }{\partial S^{\alpha}}-\frac{\partial\Gamma_{\gamma,\alpha\delta}}{\partial S^{\beta}}+\Gamma_{\omega,\gamma\beta}\Gamma_{\alpha\delta}^{\omega} -\Gamma_{\omega,\gamma\alpha}\Gamma_{\beta\delta}^{\omega}, \tag{7.4}
it is easily seen that the Riemann-Christoffel tensor RγδαβR_{\gamma\delta \alpha\beta} is antisymmetric in α\alpha and β\beta, i.e.
Rγδαβ=Rγδβα.(7.6)R_{\gamma\delta\alpha\beta}=-R_{\gamma\delta\beta\alpha}.\tag{7.6}
Far less obvious is the fact that the Riemann-Christoffel tensor is symmetric with respect to switching the first two indices with the last two, i.e.
Rαβγδ=Rγδαβ.(7.7)R_{\alpha\beta\gamma\delta}=R_{\gamma\delta\alpha\beta}.\tag{7.7}
The proof of this relationship is left as an exercise. From the above symmetries, it is easy to show that the Riemann-Christoffel tensor RγδαβR_{\gamma\delta\alpha\beta} is also anti-symmetric in γ\gamma and δ\delta, i.e.
Rδγαβ=Rγδαβ.(7.8)R_{\delta\gamma\alpha\beta}=-R_{\gamma\delta\alpha\beta}.\tag{7.8}
In addition to the above symmetries, the Riemann-Christoffel tensor satisfies the identity
Rαβγδ+Rαγδβ+Rαδβγ=0(7.9)R_{\alpha\beta\gamma\delta}+R_{\alpha\gamma\delta\beta}+R_{\alpha\delta \beta\gamma}=0\tag{7.9}
known as the first Bianchi identity. It is left as an exercise to show that, owing to the above symmetries, the Riemann-Christoffel tensor has
112n2(n21)(7.10)\frac{1}{12}n^{2}\left( n^{2}-1\right)\tag{7.10}
degrees of freedom.
Meanwhile, the second Bianchi identity involves covariant derivatives of the Riemann-Christoffel tensor and reads
εRαβγδ+γRαβδε+δRαβεγ=0.(7.11)\nabla_{\varepsilon}R_{\alpha\beta\gamma\delta}+\nabla_{\gamma}R_{\alpha \beta\delta\varepsilon}+\nabla_{\delta}R_{\alpha\beta\varepsilon\gamma}=0.\tag{7.11}
These identities are named after the Italian mathematician Luigi Bianchi who was a colleague of Gregorio Ricci and Tullio Levi-Civita.
The Riemann-Christoffel tensor originally arose in the expression for
(αββα)Tγ,(7.12)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T^{\gamma},\tag{7.12}
i.e.
(αββα)Tγ=RδαβγTδ.(7.2)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T^{\gamma}=R_{\cdot\delta\alpha\beta}^{\gamma}T^{\delta}. \tag{7.2}
As we mentioned before, this formula was first given by Gregorio Ricci and Tullio Levi-Civita in their 1901 paper titled M\'{ethodes de calcul differ'{e}ntiel absolu et leurs applications}. In fact, in his classic Foundations of the Theory of Surfaces in Tensor Terms, Veniamin Kagan refers to the above relationship as the Ricci identity.
A natural question is: what is the corresponding expression for
(αββα)Tγ,(7.13)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{\gamma},\tag{7.13}
and, indeed, for variants with arbitrary indicial signatures? Answering this question is the goal of this Section.
Let us begin with a variant TγT_{\gamma} with a single covariant index. By lowering γ\gamma on both sides of the identity
(αββα)Tγ=RδαβγTδ,(7.2)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T^{\gamma}=R_{\cdot\delta\alpha\beta}^{\gamma}T^{\delta}, \tag{7.2}
we obtain
(αββα)Tγ=RγδαβTδ.(7.14)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{\gamma}=R_{\gamma\delta\alpha\beta}T^{\delta}.\tag{7.14}
Note that this step relied on the fact that surface indices can be juggled across the surface covariant derivative. In order for the variant TδT^{\delta} to appear in its matching covariant form on the right, exchange the flavors of the index δ\delta, i.e.
(αββα)Tγ=RγαβδTδ.(7.15)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{\gamma}=R_{\gamma\cdot\alpha\beta}^{\hspace{0.02in}\cdot\delta}T_{\delta}.\tag{7.15}
While this identity represents the answer to the question that we have posed, we would like, for consistency's sake, for the Riemann-Christoffel index to appear with a contravariant first index and the covariant second index. Since the Riemann-Christoffel symbol is anti-symmetric in its first two indices, i.e.
Rγαβδ=Rγαβδ,(7.16)R_{\gamma\cdot\alpha\beta}^{\hspace{0.02in}\cdot\delta}=-R_{\cdot\gamma \alpha\beta}^{\delta},\tag{7.16}
we arrive at the final result
(αββα)Tγ=RγαβδTδ.(7.17)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{\gamma}=-R_{\cdot\gamma\alpha\beta}^{\delta}T_{\delta}.\tag{7.17}
Note the pleasing structural parallel between the terms
RδαβγTδ  and  RγαβδTδ(7.18)R_{\cdot\delta\alpha\beta}^{\gamma}T^{\delta}\text{ \ and \ }-R_{\cdot \gamma\alpha\beta}^{\delta}T_{\delta}\tag{7.18}
borne by the commutator αββα\nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta} \nabla_{\alpha} and the terms
ΓωβαTω  and  ΓαβωTω(7.19)\Gamma_{\omega\beta}^{\alpha}T^{\omega}\text{ \ and \ }-\Gamma_{\alpha\beta }^{\omega}T_{\omega}\tag{7.19}
that appear in the definition of the covariant derivative for the variants TγT^{\gamma} and TγT_{\gamma}.
The next logical task is to extend the equations
(αββα)Tγ=RδαβγTδ and          (7.2)(αββα)Tγ=RγαβδTδ          (7.17)\begin{aligned}\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T^{\gamma} & =R_{\cdot\delta\alpha\beta}^{\gamma}T^{\delta}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(7.2\right)\\\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{\gamma} & =-R_{\cdot\gamma\alpha\beta}^{\delta}T_{\delta} \ \ \ \ \ \ \ \ \ \ \left(7.17\right)\end{aligned}
to second- and higher-order variants. It turns out that the result of applying the commutator αββα\nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha} to a higher-order variant is the sum of characteristic terms for each index. Specifically, for a variant TδγT_{\delta}^{\gamma} with a representative collection of surface indices, we have
(αββα)Tδγ=RωαβγTδωRδαβωTωγ.(7.20)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{\delta}^{\gamma}=R_{\cdot\omega\alpha\beta}^{\gamma}T_{\delta}^{\omega }-R_{\cdot\delta\alpha\beta}^{\omega}T_{\omega}^{\gamma}.\tag{7.20}
As always, this equation is to be understood in the sense of prescribing the appropriate term for each type of index. The proof of this equation is left as another labor-intensive, but worthwhile exercise.
Next, let us extend the commutator αββα\nabla_{\alpha}\nabla_{\beta} -\nabla_{\beta}\nabla_{\alpha} to variants with ambient indices. It turns out that for surfaces embedded in a Euclidean space, the surface covariant derivatives commute for variants with ambient indices, i.e.
(αββα)Tji=0.(7.21)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{j}^{i}=0.\tag{7.21}
For first-order variants with scalar elements, such as TiT^{i}, this can be demonstrated inductively by considering the vector quantity
T=TiZi.(7.22)\mathbf{T}=T^{i}\mathbf{Z}_{i}.\tag{7.22}
As we established earlier, surface covariant derivatives commute for variants of order zero, i.e.
αβTβαT=0.(7.23)\nabla_{\alpha}\nabla_{\beta}\mathbf{T}-\nabla_{\beta}\nabla_{\alpha }\mathbf{T=0.}\tag{7.23}
Since the surface covariant derivative is metrinilic with respect to the ambient basis Zi\mathbf{Z}_{i}, we have
(αβTiβαTi)Zi=0(7.24)\left( \nabla_{\alpha}\nabla_{\beta}T^{i}-\nabla_{\beta}\nabla_{\alpha} T^{i}\right) \mathbf{Z}_{i}=\mathbf{0}\tag{7.24}
which implies the equation
(αββα)Ti=0.(7.25)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T^{i}=0.\tag{7.25}
A more general approach to demonstrate the fact that surface covariant derivatives commute for variants with ambient indices is to derive the relationship between the surface Riemann-Christoffel tensor RγδαβR_{\gamma \delta\alpha\beta} and its ambient counterpart RijklR_{ijkl}. Working out this approach is left as an exercise.
Putting it all together, we can establish the result of applying the commutator αββα\nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha} to variants with arbitrary indicial signature. For a tensor TjδiγT_{j\delta} ^{i\gamma} with a representative collection of indices, that equation reads
(αββα)Tjδiγ=RωαβγTjδiωRδαβωTjωiγ(7.26)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{j\delta}^{i\gamma}=R_{\cdot\omega\alpha\beta}^{\gamma}T_{j\delta}^{i\omega }-R_{\cdot\delta\alpha\beta}^{\omega}T_{j\omega}^{i\gamma}\tag{7.26}
and, as always, it is understood as a recipe for constructing the appropriate combinations for arbitrary collections of indices.
We have finally arrived at the Gauss equations which we will now discuss from a number angles. It is captured by the equation
BαγBβδBβγBαδ=Rαβγδ.(7.38)B_{\alpha\gamma}B_{\beta\delta}-B_{\beta\gamma}B_{\alpha\delta}=R_{\alpha \beta\gamma\delta}. \tag{7.38}
Note, importantly, that, although the Gauss equations are most famously applied to two-dimensional surfaces, they are valid in any number of dimensions. In this Section, we will discuss on the general nn-dimensional case while in the next Section, we will focus on the special case of two-dimensional surfaces.
In Exercise 2.23, this equation was derived by applying the commutator αββα\nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha} to the surface covariant basis Sγ\mathbf{S}_{\gamma}. However, such a derivation is applicable only to surfaces embedded in Euclidean spaces. Meanwhile, we would like to give a derivation that can be readily adapted to hypersurfaces embedded in nn-dimensional Riemannian ambient spaces. To this end, instead of applying the commutator αββα\nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta} \nabla_{\alpha} to the surface covariant basis, we will apply it to the shift tensor ZγiZ_{\gamma}^{i}.
According to the commutator equation
(αββα)Tjδiγ=RωαβγTjδiωRδαβωTjωiγ,(7.26)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{j\delta}^{i\gamma}=R_{\cdot\omega\alpha\beta}^{\gamma}T_{j\delta}^{i\omega }-R_{\cdot\delta\alpha\beta}^{\omega}T_{j\omega}^{i\gamma}, \tag{7.26}
we have
(αββα)Zγi=RγαβδZδi.(7.27)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) Z_{\gamma}^{i}=-R_{\cdot\gamma\alpha\beta}^{\delta}Z_{\delta}^{i}.\tag{7.27}
In order to establish the expression for αβZγi\nabla_{\alpha}\nabla_{\beta }Z_{\gamma}^{i}, recall that
αZβi=NiBαβ.(5.1)\nabla_{\alpha}Z_{\beta}^{i}=N^{i}B_{\alpha\beta}. \tag{5.1}
Thus,
αβZγi=α(NiBβγ).(7.28)\nabla_{\alpha}\nabla_{\beta}Z_{\gamma}^{i}=\nabla_{\alpha}\left( N^{i}B_{\beta\gamma}\right) .\tag{7.28}
By the product rule, we find
αβZγi=αNi Bβγ+NiαBβγ.(7.29)\nabla_{\alpha}\nabla_{\beta}Z_{\gamma}^{i}=\nabla_{\alpha}N^{i} ~B_{\beta\gamma}+N^{i}\nabla_{\alpha}B_{\beta\gamma}.\tag{7.29}
Now recall Weingarten's equation for the covariant derivative of the normal NiN^{i}
αNi=ZβiBαβ,(5.2)\nabla_{\alpha}N^{i}=-Z_{\beta}^{i}B_{\alpha}^{\beta}, \tag{5.2}
With the help of Weingarten's equations, we find
αβZγi=ZδiBαδBβγ+NiαBβγ.(7.30)\nabla_{\alpha}\nabla_{\beta}Z_{\gamma}^{i}=-Z_{\delta}^{i}B_{\alpha}^{\delta }B_{\beta\gamma}+N^{i}\nabla_{\alpha}B_{\beta\gamma}.\tag{7.30}
Switching the indices α\alpha and β\beta yields the expression for βαZγi\nabla_{\beta}\nabla_{\alpha}Z_{\gamma}^{i}
βαZγi=ZδiBβδBαγ+NiβBαγ.(7.31)\nabla_{\beta}\nabla_{\alpha}Z_{\gamma}^{i}=-Z_{\delta}^{i}B_{\beta}^{\delta }B_{\alpha\gamma}+N^{i}\nabla_{\beta}B_{\alpha\gamma}.\tag{7.31}
Thus,
(αββα)Zγi=(BαδBβγBβδBαγ)Zδi(αBβγβBαγ)Ni,(7.32)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) Z_{\gamma}^{i}=-\left( B_{\alpha}^{\delta}B_{\beta\gamma}-B_{\beta}^{\delta }B_{\alpha\gamma}\right) Z_{\delta}^{i}-\left( \nabla_{\alpha}B_{\beta \gamma}-\nabla_{\beta}B_{\alpha\gamma}\right) N^{i},\tag{7.32}
which, in combination with the equation
(αββα)Zγi=RγαβδZδi,(7.27)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) Z_{\gamma}^{i}=-R_{\cdot\gamma\alpha\beta}^{\delta}Z_{\delta}^{i}, \tag{7.27}
yields the identity
(BαδBβγBβδBαγ)Zδi+(αBβγβBαγ)Ni=RγαβδZδi(7.33)\left( B_{\alpha}^{\delta}B_{\beta\gamma}-B_{\beta}^{\delta}B_{\alpha\gamma }\right) Z_{\delta}^{i}+\left( \nabla_{\alpha}B_{\beta\gamma}-\nabla_{\beta }B_{\alpha\gamma}\right) N^{i}=R_{\cdot\gamma\alpha\beta}^{\delta}Z_{\delta }^{i}\tag{7.33}
known as the Gauss-Codazzi equations.
The left side of the Gauss-Codazzi equations clearly consists of tangential and normal parts. In order to extract the normal part, contract both sides of the equation with the normal NiN_{i}, which yields the equation
αBβγβBαγ=0.(7.34)\nabla_{\alpha}B_{\beta\gamma}-\nabla_{\beta}B_{\alpha\gamma}=0.\tag{7.34}
It is known as the Codazzi equation and is usually written in the form
αBβγ=βBαγ,(7.35)\nabla_{\alpha}B_{\beta\gamma}=\nabla_{\beta}B_{\alpha\gamma},\tag{7.35}
which tells us that αBβγ\nabla_{\alpha}B_{\beta\gamma} is fully symmetric in all of its subscripts.
In order to extract the tangential part of the Gauss-Codazzi equations
(BαδBβγBβδBαγ)Zδi+(αBβγβBαγ)Ni=RγαβδZδi,(7.33)\left( B_{\alpha}^{\delta}B_{\beta\gamma}-B_{\beta}^{\delta}B_{\alpha\gamma }\right) Z_{\delta}^{i}+\left( \nabla_{\alpha}B_{\beta\gamma}-\nabla_{\beta }B_{\alpha\gamma}\right) N^{i}=R_{\cdot\gamma\alpha\beta}^{\delta}Z_{\delta }^{i}, \tag{7.33}
contract both sides with the shift tensor ZiεZ_{i}^{\varepsilon} and subsequently rename ε\varepsilon into δ\delta. The result is
BαδBβγBβδBαγ=Rγαβδ,(7.36)B_{\alpha}^{\delta}B_{\beta\gamma}-B_{\beta}^{\delta}B_{\alpha\gamma} =R_{\cdot\gamma\alpha\beta}^{\delta},\tag{7.36}
which is, indeed, the Gauss equations which we have been billing up ever since we introduced the curvature tensor.
Lowering the superscript δ\delta yields the covariant form
BαδBβγBβδBαγ=Rδγαβ(7.37)B_{\alpha\delta}B_{\beta\gamma}-B_{\beta\delta}B_{\alpha\gamma}=R_{\delta \gamma\alpha\beta}\tag{7.37}
which we will prefer to write with the following combination of indices
BαγBβδBβγBαδ=Rαβγδ.(7.38)B_{\alpha\gamma}B_{\beta\delta}-B_{\beta\gamma}B_{\alpha\delta}=R_{\alpha \beta\gamma\delta}.\tag{7.38}
Raising the indices α\alpha and β\beta yields the form
BγαBδβBγβBδα=Rγδαβ(7.39)B_{\gamma}^{\alpha}B_{\delta}^{\beta}-B_{\gamma}^{\beta}B_{\delta}^{\alpha }=R_{\hspace{0.02in}\cdot\hspace{0.02in}\cdot\gamma\delta}^{\alpha\beta}\tag{7.39}
with a balanced number of superscripts and subscripts which is conducive to producing invariant relationships. Indeed, contracting α\alpha with γ\gamma and β\beta with δ\delta, we find
BααBββBβαBαβ=Rαβαβ   .(7.40)B_{\alpha}^{\alpha}B_{\beta}^{\beta}-B_{\beta}^{\alpha}B_{\alpha}^{\beta }=R_{\hspace{0.02in}\cdot\hspace{0.02in}\cdot\alpha\beta}^{\alpha\beta}\ \ \ .\tag{7.40}
The invariant
R=Rαβαβ(7.41)R=R_{\hspace{0.02in}\cdot\hspace{0.02in}\cdot\alpha\beta}^{\alpha\beta}\tag{7.41}
is known as the scalar curvature. Thus, the combination BααBββBβαBαβB_{\alpha }^{\alpha}B_{\beta}^{\beta}-B_{\beta}^{\alpha}B_{\alpha}^{\beta} is precisely the scalar curvature, i.e.
BααBββBβαBαβ=R.(7.42)B_{\alpha}^{\alpha}B_{\beta}^{\beta}-B_{\beta}^{\alpha}B_{\alpha}^{\beta}=R.\tag{7.42}
If the eigenvalues of BβαB_{\beta}^{\alpha} are denoted by λ1,,λn\lambda_{1} ,\cdots,\lambda_{n}, then
Bαα=λ1++λn(7.43)B_{\alpha}^{\alpha}=\lambda_{1}+\cdots+\lambda_{n}\tag{7.43}
while
BβαBαβ=λ12++λn2.(7.44)B_{\beta}^{\alpha}B_{\alpha}^{\beta}=\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}.\tag{7.44}
Therefore, in terms of the eigenvalues of BβαB_{\beta}^{\alpha}, the scalar curvature RR is given by
R=(λ1++λn)2(λ12++λn2)=ijλiλj.(7.45)R=\left( \lambda_{1}+\cdots+\lambda_{n}\right) ^{2}-\left( \lambda_{1} ^{2}+\cdots+\lambda_{n}^{2}\right) =\sum_{i\neq j}\lambda_{i}\lambda_{j}.\tag{7.45}
This completes our discussion of the general nn-dimensional case and we will now turn our attention to two-dimensional surfaces.
On a two-dimensional surface, the Riemann-Christoffel tensor has 24=162^{4}=16 elements. However, owing to the available symmetries
Rβαγδ=Rαβγδ and          (7.6)Rγδαβ=Rαβγδ,          (7.7)\begin{aligned}R_{\beta\alpha\gamma\delta} & =-R_{\alpha\beta\gamma\delta}\text{ and}\ \ \ \ \ \ \ \ \ \ \left(7.6\right)\\R_{\gamma\delta\alpha\beta} & =R_{\alpha\beta\gamma\delta}, \ \ \ \ \ \ \ \ \ \ \left(7.7\right)\end{aligned}
there can be only four nonzero elements, i.e.
R1212, R1221, R2112, and R2121.(7.46)R_{1212},\ R_{1221},\ R_{2112},\text{ and }R_{2121}.\tag{7.46}
Furthermore, the same symmetries dictate that these elements are related by
R1212=R1221=R2121= R2112,(7.47)R_{1212}=-R_{1221}=R_{2121}=-\ R_{2112},\tag{7.47}
which reduces the actual number of degrees of freedom to 11. Allowing the element R1212R_{1212} to present the sole degree of freedom, we can capture the two-dimensional Riemann-Christoffel tensor with the help of the permutation symbols eαβe_{\alpha\beta} and eγδe_{\gamma\delta}, i.e.
Rαβγδ=R1212 eαβeγδ.(7.48)R_{\alpha\beta\gamma\delta}=R_{1212}~e_{\alpha\beta}e_{\gamma\delta}.\tag{7.48}
In order to tensorize the above identity, switch from permutation systems eαβe_{\alpha\beta} and eγδe_{\gamma\delta} to the Levi-Civita symbols εαβ\varepsilon_{\alpha\beta} and εγδ\varepsilon_{\gamma\delta}. Since
εαβ=Seαβ  and  εγδ=Seγδ,(2.49)\varepsilon_{\alpha\beta}=\sqrt{S}e_{\alpha\beta}\text{ \ and \ } \varepsilon_{\gamma\delta}=\sqrt{S}e_{\gamma\delta}, \tag{2.49}
where SS is, of course, the determinant of the metric tensor SαβS_{\alpha\beta }, we have
Rβαγδ=R1212Sεαβεγδ.(7.49)R_{\beta\alpha\gamma\delta}=\frac{R_{1212}}{S}\varepsilon_{\alpha\beta }\varepsilon_{\gamma\delta}.\tag{7.49}
By the quotient theorem, the quantity
R1212S(7.50)\frac{R_{1212}}{S}\tag{7.50}
is an invariant. It is known as the Gaussian curvature and is denoted by the symbol KK, i.e.
K=R1212S.(7.51)K=\frac{R_{1212}}{S}.\tag{7.51}
In terms of the Gaussian curvature, the Riemann-Christoffel tensor is given by
Rαβγδ=Kεαβεγδ.(7.52)R_{\alpha\beta\gamma\delta}=K\varepsilon_{\alpha\beta}\varepsilon _{\gamma\delta}.\tag{7.52}
There are two explicit expressions for KK. The first one is obtained by raising the indices α\alpha and β\beta, i.e.
Rγδαβ=Kεαβεγδ=Kδγδαβ,(7.53)R_{\hspace{0.02in}\cdot\hspace{0.02in}\cdot\gamma\delta}^{\alpha\beta }=K\varepsilon^{\alpha\beta}\varepsilon_{\gamma\delta}=K\delta_{\gamma\delta }^{\alpha\beta},\tag{7.53}
and subsequently contracting with γ\gamma and δ\delta, which yields.
Rαβαβ=2K(7.54)R_{\hspace{0.02in}\cdot\hspace{0.02in}\cdot\alpha\beta}^{\alpha\beta}=2K\tag{7.54}
or
K=12Rαβαβ.(7.55)K=\frac{1}{2}R_{\hspace{0.02in}\cdot\hspace{0.02in}\cdot\alpha\beta} ^{\alpha\beta}.\tag{7.55}
Alternatively, contract both sides of the identity
Rαβγδ=Kεαβεγδ(7.52)R_{\alpha\beta\gamma\delta}=K\varepsilon_{\alpha\beta}\varepsilon _{\gamma\delta} \tag{7.52}
with εαβεγδ\varepsilon^{\alpha\beta}\varepsilon^{\gamma\delta}, which yields
εαβεγδRγδαβ=4K(7.56)\varepsilon^{\alpha\beta}\varepsilon^{\gamma\delta}R_{\gamma\delta\alpha\beta }=4K\tag{7.56}
or
K=14εαβεγδRγδαβ.(7.57)K=\frac{1}{4}\varepsilon^{\alpha\beta}\varepsilon^{\gamma\delta} R_{\gamma\delta\alpha\beta}.\tag{7.57}
The Gauss equations
BαγBβδBβγBαδ=Rαβγδ(7.38)B_{\alpha\gamma}B_{\beta\delta}-B_{\beta\gamma}B_{\alpha\delta}=R_{\alpha \beta\gamma\delta} \tag{7.38}
can be written in a number of special forms for two-dimensional surfaces.
Recall from Chapter TBD of Introduction to Tensor Calculus, that for any second-order system AαβA_{\alpha\beta} in two dimensions, we have
AαγAβδAβγAαδ=Aεαβεγδ,(6.45)A_{\alpha\gamma}A_{\beta\delta}-A_{\beta\gamma}A_{\alpha\delta}=A\varepsilon _{\alpha\beta}\varepsilon_{\gamma\delta}, \tag{6.45}
where AA is the determinant of the mixed system AβαA_{\cdot\beta}^{\alpha}. Thus, for the curvature tensor BαβB_{\alpha\beta}, we have
BαγBβδBβγBαδ=Bεαβεγδ,(7.58)B_{\alpha\gamma}B_{\beta\delta}-B_{\beta\gamma}B_{\alpha\delta}=B\varepsilon _{\alpha\beta}\varepsilon_{\gamma\delta},\tag{7.58}
where BB is the determinant of BβαB_{\beta}^{\alpha}. Meanwhile, by the Gauss equation, the combination on the left equals the Riemann-Christoffel tensor RαβγδR_{\alpha\beta\gamma\delta}. Thus, its alternative formulation on a two-dimensional surface is
Rαβγδ=Bεαβεγδ.(7.59)R_{\alpha\beta\gamma\delta}=B\varepsilon_{\alpha\beta}\varepsilon _{\gamma\delta}.\tag{7.59}
At the same time, recall that (for reasons having nothing to do with the Gauss equations), the Riemann-Christoffel tensor RαβγδR_{\alpha\beta\gamma\delta} is given by
Rαβγδ=Kεαβεγδ.(7.52)R_{\alpha\beta\gamma\delta}=K\varepsilon_{\alpha\beta}\varepsilon _{\gamma\delta}. \tag{7.52}
Thus,
Kεαβεγδ=Bεαβεγδ(7.60)K\varepsilon_{\alpha\beta}\varepsilon_{\gamma\delta}=B\varepsilon_{\alpha \beta}\varepsilon_{\gamma\delta}\tag{7.60}
and, indeed,
K=B.(7.61)K=B.\tag{7.61}
In words, the Gaussian curvature KK equals the determinant BB of the mixed curvature tensor BβαB_{\beta}^{\alpha}. This is clearly the most concise form of the Gauss equations for two-dimensional surfaces. It follows that the Gaussian curvature equals the product of the principal curvatures κ1\kappa_{1} and κ2\kappa_{2}, i.e.
K=κ1κ2.(7.62)K=\kappa_{1}\kappa_{2}.\tag{7.62}
Yet another form of the Gauss equations ties together the traces of the first, second, and third fundamental tensors. Write the Gauss equations for a two-dimensional surface in the form
BαγBβδBβγBαδ=Kεαβεγδ.(7.63)B_{\alpha\gamma}B_{\beta\delta}-B_{\beta\gamma}B_{\alpha\delta}=K\varepsilon _{\alpha\beta}\varepsilon_{\gamma\delta}.\tag{7.63}
Raising the index α\alpha, i.e.
BγαBβδBβγBδα=Kεβαεγδ,(7.64)B_{\gamma}^{\alpha}B_{\beta\delta}-B_{\beta\gamma}B_{\delta}^{\alpha }=K\varepsilon_{\cdot\beta}^{\alpha}\varepsilon_{\gamma\delta},\tag{7.64}
and subsequently contracting it with δ\delta, we find
BγαBβαBβγBαα=Kεβαεαγ.(7.65)B_{\gamma}^{\alpha}B_{\beta\alpha}-B_{\beta\gamma}B_{\alpha}^{\alpha }=K\varepsilon_{\cdot\beta}^{\alpha}\varepsilon_{\alpha\gamma}.\tag{7.65}
Since εβαεαδ=Sβδ\varepsilon_{\cdot\beta}^{\alpha}\varepsilon_{\alpha\delta} =S_{\beta\delta}, we have
BγαBβαBβγBαα=KSβδ.(7.66)B_{\gamma}^{\alpha}B_{\beta\alpha}-B_{\beta\gamma}B_{\alpha}^{\alpha }=KS_{\beta\delta}.\tag{7.66}
After reshuffling the names of the indices and taking advantage of the symmetry of the curvature tensor, this equation can be written in the form
BαγBγβBγγBαβ=KSαβ.(7.67)B_{\alpha}^{\gamma}B_{\gamma\beta}-B_{\gamma}^{\gamma}B_{\alpha\beta }=KS_{\alpha\beta}.\tag{7.67}
Recall that the metric tensor SαβS_{\alpha\beta}, the curvature tensor BαβB_{\alpha\beta}, and the tensor
Cαβ=BαγBγβ(7.68)C_{\alpha\beta}=B_{\alpha}^{\gamma}B_{\gamma\beta}\tag{7.68}
are sometimes referred to as the first, second, and third groundforms of the surface. Thus, the equation
BαγBγβBγγBαβ=KSαβ(7.67)B_{\alpha}^{\gamma}B_{\gamma\beta}-B_{\gamma}^{\gamma}B_{\alpha\beta }=KS_{\alpha\beta} \tag{7.67}
may be described as relating the three fundamental groundforms of the surface.
Upon raising the index β\beta and contracting with α\alpha, as well as renaming γβ\gamma\rightarrow\beta, we arrive at the invariant equation
BαβBβαBααBββ=2K.(7.69)B_{\alpha}^{\beta}B_{\beta}^{\alpha}-B_{\alpha}^{\alpha}B_{\beta}^{\beta}=2K.\tag{7.69}
This equation relates three invariants: the mean curvature BααB_{\alpha }^{\alpha}, the Gaussian curvature KK, and the trace BβαBαβB_{\beta}^{\alpha }B_{\alpha}^{\beta} of the third groundform.

7.7.1A sphere of radius RR

Recall that for a sphere of radius RR, the curvature tensor BβαB_{\beta }^{\alpha} is given by
[Bβα]=[1R001R].(6.72)\left[ B_{\beta}^{\alpha}\right] =\left[ \begin{array} {ll} -\frac{1}{R} & \phantom{-} 0\\ \phantom{-} 0 & -\frac{1}{R} \end{array} \right] . \tag{6.72}
Therefore,
K=1R2.(7.70)K=\frac{1}{R^{2}}.\tag{7.70}

7.7.2A cylinder of radius RR

Recall that for a cylinder of sphere RR, the curvature tensor BβαB_{\beta }^{\alpha} is given by
[Bβα]=[1R000].(6.78)\left[ B_{\beta}^{\alpha}\right] =\left[ \begin{array} {ll} -\frac{1}{R} & \phantom{-} 0\\ \phantom{-} 0 & \phantom{-} 0 \end{array} \right] . \tag{6.78}
Thus,
K=0,(7.71)K=0,\tag{7.71}
which is consistent with the fact that a cylinder can be isometrically deformed into a section of the plane.

7.7.3A torus with radii RR and rr

Recall that for a torus with radii RR and rr, the curvature tensor BβαB_{\beta}^{\alpha} is given by
[Bβα]=[cosφR+rcosφ001r](6.85)\left[ B_{\beta}^{\alpha}\right] =\left[ \begin{array} {ll} -\frac{\cos\varphi}{R+r\cos\varphi} & \phantom{-} 0\\ \phantom{-} 0 & -\frac{1}{r} \end{array} \right] \tag{6.85}
Therefore,
K=cosϕr(R+rcosϕ).(7.72)K=\frac{\cos\phi}{r\left( R+r\cos\phi\right) }.\tag{7.72}

7.7.4A surface of revolution

Recall that for a surface of revolution given by the functions G(γ)G\left( \gamma\right) and H(γ)H\left( \gamma\right) , the curvature tensor BβαB_{\beta}^{\alpha} is given by
[Bβα]=[HγGGγ2+Hγ200GγγHγGγHγγ(Gγ2+Hγ2)3/2].(6.92)\left[ B_{\beta}^{\alpha}\right] =\left[ \begin{array} {cc} -\frac{H_{\gamma}}{G\sqrt{G_{\gamma}^{2}+H_{\gamma}^{2}}} & 0\\ 0 & \frac{G_{\gamma\gamma}H_{\gamma}-G_{\gamma}H_{\gamma\gamma}}{\left( G_{\gamma}^{2}+H_{\gamma}^{2}\right) ^{3/2}} \end{array} \right] .\tag{6.92}
Therefore,
K=Hγ(GγHγγGγγHγ)G(Gγ2+Hγ2)2(7.73)K=\frac{H_{\gamma}\left( G_{\gamma}H_{\gamma\gamma}-G_{\gamma\gamma} H_{\gamma}\right) }{G\left( G_{\gamma}^{2}+H_{\gamma}^{2}\right) ^{2}}\tag{7.73}
For the common choice H(γ)=γH\left( \gamma\right) =\gamma, we have
K=GγγG(1+Gγ2)2.(7.74)K=-\frac{G_{\gamma\gamma}}{G\left( 1+G_{\gamma}^{2}\right) ^{2}}.\tag{7.74}

7.7.5A graph in Cartesian coordinates

z=Fleft( x,yright)
Shift tensor
[Zαi],[Ziα]=[1001FxFy]T(7.75)\left[ Z_{\alpha}^{i}\right] ,\left[ Z_{i\alpha}\right] =\left[ \begin{array} {cc} 1 & 0\\ 0 & 1\\ F_{x} & F_{y} \end{array} \right] ^{T}\tag{7.75}
Metric tensor
[Sαβ]=[1+Fx2FxFyFxFy1+Fy2](7.76)\left[ S_{\alpha\beta}\right] =\left[ \begin{array} {cc} 1+F_{x}^{2} & F_{x}F_{y}\\ F_{x}F_{y} & 1+F_{y}^{2} \end{array} \right]\tag{7.76}
[Sαβ]=11+Fx2+Fy2[1+Fy2FxFyFxFy1+Fx2](7.77)\left[ S^{\alpha\beta}\right] =\frac{1}{1+F_{x}^{2}+F_{y}^{2}}\left[ \begin{array} {cc} 1+F_{y}^{2} & -F_{x}F_{y}\\ -F_{x}F_{y} & 1+F_{x}^{2} \end{array} \right]\tag{7.77}
The area element
S=1+Fx2+Fy2(7.78)\sqrt{S}=\sqrt{1+F_{x}^{2}+F_{y}^{2}}\tag{7.78}
The normal
[Ni],[Ni]=11+Fx2+Fy2[FxFy1](7.79)\left[ N^{i}\right] ,\left[ N_{i}\right] =\frac{1}{\sqrt{1+F_{x}^{2} +F_{y}^{2}}}\left[ \begin{array} {r} -F_{x}\\ -F_{y}\\ 1 \end{array} \right]\tag{7.79}
The object 2Zi/SαSβ\partial^{2}Z^{i}/\partial S^{\alpha}\partial S^{\beta}
[Zα1i]=[0000FxxFxy]      [Zα2i]=[0000FxyFyy](7.80)\left[ Z_{\alpha1}^{i}\right] =\left[ \begin{array} {cc} 0 & 0\\ 0 & 0\\ F_{xx} & F_{xy} \end{array} \right] \ \ \ \ \ \ \left[ Z_{\alpha2}^{i}\right] =\left[ \begin{array} {cc} 0 & 0\\ 0 & 0\\ F_{xy} & F_{yy} \end{array} \right]\tag{7.80}
The curvature tensor BαβB_{\alpha\beta}
[Bαβ]=11+Fx2+Fy2[FxxFxyFxyFyy](7.81)\left[ B_{\alpha\beta}\right] =\frac{1}{\sqrt{1+F_{x}^{2}+F_{y}^{2}}}\left[ \begin{array} {cc} F_{xx} & F_{xy}\\ F_{xy} & F_{yy} \end{array} \right]\tag{7.81}
The curvature tensor BβαB_{\beta}^{\alpha}
[Bβα]=1(1+Fx2+Fy2)3/2[Fxx(1+Fy2)FxyFxFyFxy(1+Fx2)FxxFxFyFxy(1+Fy2)FyyFxFyFyy(1+Fx2)FxyFxFy](7.82)\left[ B_{\beta}^{\alpha}\right] =\frac{1}{\left( 1+F_{x}^{2}+F_{y} ^{2}\right) ^{3/2}}\left[ \begin{array} {rr} F_{xx}\left( 1+F_{y}^{2}\right) -F_{xy}F_{x}F_{y} & F_{xy}\left( 1+F_{x}^{2}\right) -F_{xx}F_{x}F_{y}\\ F_{xy}\left( 1+F_{y}^{2}\right) -F_{yy}F_{x}F_{y} & F_{yy}\left( 1+F_{x}^{2}\right) -F_{xy}F_{x}F_{y} \end{array} \right]\tag{7.82}
Mean curvature BααB_{\alpha}^{\alpha}:
Bαα=Fxx+Fyy+FxxFy2+FyyFx22FxyFxFy(1+Fx2+Fy2)3/2(7.83)B_{\alpha}^{\alpha}=\frac{F_{xx}+F_{yy}+F_{xx}F_{y}^{2}+F_{yy}F_{x} ^{2}-2F_{xy}F_{x}F_{y}}{\left( 1+F_{x}^{2}+F_{y}^{2}\right) ^{3/2}}\tag{7.83}
Gaussian curvature KK:
K=FxxFyyFxy2(1+Fx2+Fy2)2(7.84)K=\frac{F_{xx}F_{yy}-F_{xy}^{2}}{\left( 1+F_{x}^{2}+F_{y}^{2}\right) ^{2}}\tag{7.84}
Finally, we take a moment to preview an important integration theorem that we will discuss in the future. The Gauss-Bonnet theorem is a fundamental result in differential geometry and topology. It states that for a closed surface, the total curvature, defined as the integral of the Gaussian curvature KK, depends on the genus of the surface and not its shape. The genus gg of a surface is the number of topological holes. For example, the genus of a sphere is zero and the genus of a torus is one. According to the Gauss-Bonnet theorem, the total curvature is 4π(1g)4\pi\left( 1-g\right) :
SKdS=4π(1g).(7.85)\int_{S}KdS=4\pi\left( 1-g\right) .\tag{7.85}
In particular, the total curvature is 4π4\pi for any surface of genus zero and 00 for any surface of genus one.

7.9.1Elementary properties of the Riemann-Christoffel tensor

Exercise 7.1Show that
Rγδαβ=Γγ,βδSαΓγ,αδSβ+Γω,γβΓαδωΓω,γαΓβδω,(7.86)R_{\gamma\delta\alpha\beta}=\frac{\partial\Gamma_{\gamma,\beta\delta} }{\partial S^{\alpha}}-\frac{\partial\Gamma_{\gamma,\alpha\delta}}{\partial S^{\beta}}+\Gamma_{\omega,\gamma\beta}\Gamma_{\alpha\delta}^{\omega} -\Gamma_{\omega,\gamma\alpha}\Gamma_{\beta\delta}^{\omega},\tag{7.86}
where, naturally
Rγδαβ=SγωRδαβω.(7.87)R_{\gamma\delta\alpha\beta}=S_{\gamma\omega}R_{\cdot\delta\alpha\beta} ^{\omega}.\tag{7.87}
Exercise 7.2Derive the anti-symmetric property
Rγδαβ=Rγδβα(7.6)R_{\gamma\delta\alpha\beta}=-R_{\gamma\delta\beta\alpha} \tag{7.6}
of the Riemann-Christoffel tensor from the identity
(αββα)Tγ=RδαβγTδ.(7.2)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T^{\gamma}=R_{\cdot\delta\alpha\beta}^{\gamma}T^{\delta}. \tag{7.2}
Exercise 7.3Demonstrate the symmetric property
Rγδαβ=Rαβγδ.(7.7)R_{\gamma\delta\alpha\beta}=R_{\alpha\beta\gamma\delta}. \tag{7.7}
This can be accomplished by the approach outlined in the exercises of Chapter TBD of Introduction to Tensor Calculus. Alternatively, it can be accomplished more easily with the help of the Gauss equations. However, this approach is less general since the Gauss equations are valid only for surfaces embedded in a Euclidean space.
Exercise 7.4Demonstrate the first and the second Bianchi identities
Rαβγδ+Rαγδβ+Rαδβγ=0(7.9)R_{\alpha\beta\gamma\delta}+R_{\alpha\gamma\delta\beta}+R_{\alpha\delta \beta\gamma}=0 \tag{7.9}
and
εRαβγδ+γRαβδε+δRαβεγ=0.(7.11)\nabla_{\varepsilon}R_{\alpha\beta\gamma\delta}+\nabla_{\gamma}R_{\alpha \beta\delta\varepsilon}+\nabla_{\delta}R_{\alpha\beta\varepsilon\gamma}=0. \tag{7.11}
These tasks can also be accomplished either by a direct calculation or, more easily but with less generality, with the help of the Gauss and Codazzi equations.
Exercise 7.5Show that
Rαγδα=0(7.88)R_{\cdot\alpha\gamma\delta}^{\alpha}=0\tag{7.88}
and, similarly,
Rαβγγ=0.(7.89)R_{\alpha\beta\cdot\gamma}^{\hspace{0.02in}\cdot\hspace{0.02in}\cdot \hspace{0.02in}\gamma}=0.\tag{7.89}
Exercise 7.6Show that, owing to the inherent symmetries, including the first Bianchi identity, the Riemann-Christoffel tensor has
112n2(n21)(7.10)\frac{1}{12}n^{2}\left( n^{2}-1\right) \tag{7.10}
degrees of freedom.
Exercise 7.7Demonstrate the equation
(αββα)Tδγ=RωαβγTδωRδαβωTωγ(7.20)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{\delta}^{\gamma}=R_{\cdot\omega\alpha\beta}^{\gamma}T_{\delta}^{\omega }-R_{\cdot\delta\alpha\beta}^{\omega}T_{\omega}^{\gamma} \tag{7.20}
by an inductive argument. Hint: apply the commutator αββα\nabla_{\alpha} \nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha} to the variant
Tγ=TδγSδ,(7.90)T^{\gamma}=T_{\delta}^{\gamma}S^{\delta},\tag{7.90}
where SδS^{\delta} is an arbitrary first-order variant.
Exercise 7.8Use an inductive approach to show that surface covariant derivatives commute for variants with ambient indices, i.e. for a variant TjiT_{j}^{i} with a representative collection of ambient indices, this statement reads
(αββα)Tji=0.(7.91)\left( \nabla_{\alpha}\nabla_{\beta}-\nabla_{\beta}\nabla_{\alpha}\right) T_{j}^{i}=0.\tag{7.91}
Exercise 7.9Show that for a surface embedded in a Riemannian space, the surface and ambient Riemann-Christoffel tensors RαβγδR_{\alpha\beta\gamma\delta} and RijklR_{ijkl} are related by the identity
Rαβγδ=RijklZαiZβjZγkZδl+BαγBβδBαδBβγ(7.92)R_{\alpha\beta\gamma\delta}=R_{ijkl}Z_{\alpha}^{i}Z_{\beta}^{j}Z_{\gamma} ^{k}Z_{\delta}^{l}+B_{\alpha\gamma}B_{\beta\delta}-B_{\alpha\delta} B_{\beta\gamma}\tag{7.92}
which represents a generalization of the Gauss equations, but also makes us see the latter simply as a relationship between the surface and ambient Riemann-Christoffel tensors.

7.9.2Expressions for the Gaussian curvature

Exercise 7.10Show that the equation
K=B(7.61)K=B \tag{7.61}
can be written in the form
K=Determinant of BαβDeterminant of Sαβ,(7.93)K=\frac{\text{Determinant of }B_{\alpha\beta}}{\text{Determinant of } S_{\alpha\beta}},\tag{7.93}
which is the form in which it usually appears in sources that do not employ index juggling.
Exercise 7.11Show that the Gaussian curvature KK is given by the following equation
K=1S(Γ2,11S2Γ2,12S1+Γ12αΓα,12Γ11αΓα,22).(7.94)K=\frac{1}{S}\left( \frac{\partial\Gamma_{2,11}}{\partial S^{2}} -\frac{\partial\Gamma_{2,12}}{\partial S^{1}}+\Gamma_{12}^{\alpha} \Gamma_{\alpha,12}-\Gamma_{11}^{\alpha}\Gamma_{\alpha,22}\right) .\tag{7.94}
Exercise 7.12Demonstrate the Bieberbach formulas
SK=S2(SS11Γ112)S1(SS11Γ122)(7.95)\sqrt{S}K=\frac{\partial}{\partial S^{2}}\left( \frac{S}{S_{11}}\Gamma _{11}^{2}\right) -\frac{\partial}{\partial S^{1}}\left( \frac{S}{S_{11} }\Gamma_{12}^{2}\right)\tag{7.95}
and
SK=S2(SS22Γ211)+S1(SS22Γ221),(7.96)\sqrt{S}K=-\frac{\partial}{\partial S^{2}}\left( \frac{S}{S_{22}}\Gamma _{21}^{1}\right) +\frac{\partial}{\partial S^{1}}\left( \frac{S}{S_{22} }\Gamma_{22}^{1}\right) ,\tag{7.96}
where SS is the determinant of SαβS_{\alpha\beta}. These formulas appeared in Ludwig Bieberbach's Differentialgeometrie published in 1932. On a historical note, Bieberbach was an ardent adherent of the Nazi cause and actively pursued the dismissal of his Jewish colleagues. This fact is gracefully overlooked by Veniamin Kagan in his Foundations of the Theory of Surfaces in Tensor Terms where he describes the above formulas as most simple and elegant.
Exercise 7.13Show that the Gaussian curvature vanishes for a cone, which is consistent with the fact that a cone can be isometrically deformed into a section of a plane.
Exercise 7.14Show that the Gaussian curvature vanishes for a tangent developable discussed in Section 6.7.1.
Exercise 7.15Consider a curve given as the graph of a function z=F(x,y)z=F\left( x,y\right) in Cartesian coordinates x,y,zx,y,z. Derive all of the relevant geometric objects. In particular, show that
[Bβα]=1(1+Fx2+Fy2)3/2[Fxx+FxxFy2FxyFyFxFxy+FxyFy2FyyFxFyFxy+FxyFx2FxxFyFxFyy+FyyFx2FxyFyFx].(7.97)\left[ B_{\beta}^{\alpha}\right] =\frac{1}{\left( 1+F_{x}^{2}+F_{y} ^{2}\right) ^{3/2}}\left[ \begin{array} {cc} F_{xx}+F_{xx}F_{y}^{2}-F_{xy}F_{y}F_{x} & F_{xy}+F_{xy}F_{y}^{2}-F_{yy} F_{x}F_{y}\\ F_{xy}+F_{xy}F_{x}^{2}-F_{xx}F_{y}F_{x} & F_{yy}+F_{yy}F_{x}^{2}-F_{xy} F_{y}F_{x} \end{array} \right] .\tag{7.97}
Consequently,
Bαα=Fxx+Fyy+FxxFy2+FyyFx22FxyFyFx(1+Fx2+Fy2)3/2(7.98)B_{\alpha}^{\alpha}=\frac{F_{xx}+F_{yy}+F_{xx}F_{y}^{2}+F_{yy}F_{x} ^{2}-2F_{xy}F_{y}F_{x}}{\left( 1+F_{x}^{2}+F_{y}^{2}\right) ^{3/2}}\tag{7.98}
and
K=FxxFyyFxy2(1+Fx2+Fy2)2.(7.99)K=\frac{F_{xx}F_{yy}-F_{xy}^{2}}{\left( 1+F_{x}^{2}+F_{y}^{2}\right) ^{2}}.\tag{7.99}

7.9.3The Ricci tensor, the scalar curvature, and the Einstein tensor

The next set of exercises has to do with the following definitions. The Ricci tensor RαβR_{\alpha\beta} is defined by
Rαβ=Rαγβγ.(7.100)R_{\alpha\beta}=R_{\cdot\alpha\gamma\beta}^{\gamma}.\tag{7.100}
Its trace
R=Rαα(7.101)R=R_{\alpha}^{\alpha}\tag{7.101}
is known as the scalar curvature. Finally, the Einstein tensor GαβG_{\alpha\beta} is defined by
Gαβ=Rαβ12RSαβ.(7.102)G_{\alpha\beta}=R_{\alpha\beta}-\frac{1}{2}RS_{\alpha\beta}.\tag{7.102}
begin{exercise} Show that the scalar curvature is given by
R=Rαβαβ.(7.103)R=R_{\hspace{0.02in}\cdot\hspace{0.02in}\cdot\alpha\beta}^{\alpha\beta}.\tag{7.103}
end{exercise}
Exercise 7.16Show that the Ricci tensor RαβR_{\alpha\beta} is symmetric, i.e.
Rαβ=Rβα.(7.104)R_{\alpha\beta}=R_{\beta\alpha}.\tag{7.104}
Exercise 7.17Show that the Einstein tensor GαβG_{\alpha\beta} is symmetric, i.e.
Gαβ=Gβα.(7.105)G_{\alpha\beta}=G_{\beta\alpha}.\tag{7.105}
Exercise 7.18Show that for a two-dimensional surface the trace of the Einstein tensor vanishes, i.e.
Gαα=0.(7.106)G_{\alpha}^{\alpha}=0.\tag{7.106}
Exercise 7.19Show that for a two-dimensional surface
Rαβγδ=SαγRβδSαδRβγ.(7.107)R_{\alpha\beta\gamma\delta}=S_{\alpha\gamma}R_{\beta\delta}-S_{\alpha\delta }R_{\beta\gamma}.\tag{7.107}

7.9.4Verification of integration theorems

Exercise 7.20Verify the Gauss-Bonnet theorem for a sphere, i.e.
SKdS=4π.(7.108)\int_{S}KdS=4\pi.\tag{7.108}
Exercise 7.21Verify the Gauss-Bonnet theorem for a torus, i.e.
SKdS=0.(7.109)\int_{S}KdS=0.\tag{7.109}
Send feedback to Pavel