Analysis of Several Concrete Surfaces

In this Chapter, we will calculate the fundamental variants introduced in the previous Chapter -- the shift tensor ZαiZ_{\alpha}^{i}, the metric tensors SαβS_{\alpha\beta} and SαβS^{\alpha\beta}, the area element S\sqrt{S}, the components NiN^{i} of the unit normal, and the Christoffel symbol Γβγα\Gamma_{\beta\gamma}^{\alpha} -- for concrete surfaces. Examples always bring theory to life but, in the case of surfaces, they are particularly important: while all Euclidean spaces are essentially the same, each surface represents its own unique space.
We will begin with a sphere of radius RR referred to coordinates illustrated in the following figure.
(3.7)
This example will offer a great deal of insight as we will analyze it with the help of two different ambient coordinate systems: Cartesian and spherical. Since a spherical coordinate system is perfectly suited to the geometry of a sphere, its use will simplify our calculations despite the greater complexity of the ambient metric tensor and Christoffel symbol.
In this Chapter, we will denote matrices corresponding to a system by putting brackets around the associated indicial symbol. For example, [Sαβ]\left[ S_{\alpha\beta}\right] will denote the matrix associated with the covariant metric tensor and [Zαi]\left[ Z_{\alpha}^{i}\right] will denote the matrix corresponding to the shift tensor.

4.1.1In Cartesian ambient coordinates

Let us operate with spherical coordinates θ,φ\theta,\varphi on the surface and Cartesian coordinates x,y,zx,y,z in the ambient space. Recall the equations of the surface
x(θ,φ)=Rsinθcosφ          (3.8)y(θ,φ)=Rsinθsinφ          (3.9)z(θ,φ)=Rcosθ          (3.10)\begin{aligned}x\left( \theta,\varphi\right) & =R\sin\theta\cos\varphi\ \ \ \ \ \ \ \ \ \ \left(3.8\right)\\y\left( \theta,\varphi\right) & =R\sin\theta\sin\varphi\ \ \ \ \ \ \ \ \ \ \left(3.9\right)\\z\left( \theta,\varphi\right) & =R\cos\theta\ \ \ \ \ \ \ \ \ \ \left(3.10\right)\end{aligned}
Recall that all versions of the ambient metric tensor, i.e. ZijZ_{ij}, ZijZ^{ij} , and δji\delta_{j}^{i}, correspond to the 3×33\times3 identity matrix, i.e.
[Zij]=[Zij]=[100010001].(4.1)\left[ Z_{ij}\right] =\left[ Z^{ij}\right] =\left[ \begin{array} {ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right] .\tag{4.1}
Thus, the placement of the ambient indices has no effect on the values of any of the variants.
The shift tensors ZαiZ_{\alpha}^{i} and ZiαZ_{i\alpha} are obtained by differentiating the equations of the surface with respect to each of the surface variables, θ\theta and φ\varphi. Therefore, we have
[Zαi]=[Ziα]=[RcosθcosφRsinθsinφRcosθsinφRsinθcosφRsinθ0].(4.2)\left[ Z_{\alpha}^{i}\right] =\left[ Z_{i\alpha}\right] =\left[ \begin{array} {ll} \phantom{-} R\cos\theta\cos\varphi & -R\sin\theta\sin\varphi\\ \phantom{-} R\cos\theta\sin\varphi & \phantom{-} R\sin\theta\cos\varphi\\ -R\sin\theta & 0 \end{array} \right] .\tag{4.2}
The covariant metric tensor SαβS_{\alpha\beta} is given by the equation
Sαβ=ZiαZβi(3.113)S_{\alpha\beta}=Z_{i\alpha}Z_{\beta}^{i} \tag{3.113}
and is therefore represented by the matrix
[Sαβ]=[Ziα]T[Zβi](4.3)\left[ S_{\alpha\beta}\right] =\left[ Z_{i\alpha}\right] ^{T}\left[ Z_{\beta}^{i}\right]\tag{4.3}
which yields
[Sαβ]=[R200R2sin2θ].(4.4)\left[ S_{\alpha\beta}\right] =\left[ \begin{array} {cc} R^{2} & 0\\ 0 & R^{2}\sin^{2}\theta \end{array} \right] .\tag{4.4}
Since [Sαβ]\left[ S_{\alpha\beta}\right] is diagonal, the covariant basis is orthogonal. Also, you probably recognize [Sαβ]\left[ S_{\alpha\beta}\right] as the bottom right 2×22\times2 submatrix of the metric tensor associated with spherical coordinates in a three-dimensional Euclidean space. It is left as an exercise to explain why this is so by observing the relationship between SαS_{\alpha} and the ambient covariant basis corresponding to spherical coordinates.
The contravariant metric tensor SαβS^{\alpha\beta} corresponds to [Sαβ]1\left[ S_{\alpha\beta}\right] ^{-1}, i.e.
[Sαβ]=[Sαβ]1=[R200R2sin2θ].(4.5)\left[ S^{\alpha\beta}\right] =\left[ S_{\alpha\beta}\right] ^{-1}=\left[ \begin{array} {cc} R^{-2} & 0\\ 0 & R^{-2}\sin^{-2}\theta \end{array} \right] .\tag{4.5}
The area element S\sqrt{S} is the square root of the determinant of [Sαβ]\left[ S_{\alpha\beta}\right] , i.e.
S=det[Sαβ]=R2sinθ.(4.6)\sqrt{S}=\sqrt{\det\left[ S_{\alpha\beta}\right] }=R^{2}\sin\theta.\tag{4.6}
If you recall, S\sqrt{S} is used in converting geometric integrals over the surface into arithmetic integrals. For example, the total area of the sphere of radius RR is given by
SdS=0π02πSdφdθ=0π02πR2sinθdφdθ=4πR2.(4.7)\int_{S}dS=\int_{0}^{\pi}\int_{0}^{2\pi}\sqrt{S}d\varphi d\theta=\int_{0} ^{\pi}\int_{0}^{2\pi}R^{2}\sin\theta d\varphi d\theta=4\pi R^{2}.\tag{4.7}
Next, let us calculate the shift tensors ZiαZ^{i\alpha} and ZiαZ_{i}^{\alpha} with raised surface indices. Since,
Ziα=SαβZβi    and          (4.8)Ziα=SαβZiβ          (4.9)\begin{aligned}Z^{i\alpha} & =S^{\alpha\beta}Z_{\beta}^{i}\text{ \ \ \ and}\ \ \ \ \ \ \ \ \ \ \left(4.8\right)\\Z_{i}^{\alpha} & =S^{\alpha\beta}Z_{i\beta}\ \ \ \ \ \ \ \ \ \ \left(4.9\right)\end{aligned}
we have
[Ziα]=[Zβi][Sαβ]    and          (4.10)[Ziα]=[Ziβ][Sαβ],          (4.11)\begin{aligned}\left[ Z^{i\alpha}\right] & =\left[ Z_{\beta}^{i}\right] \left[ S^{\alpha\beta}\right] \text{\ \ \ \ and}\ \ \ \ \ \ \ \ \ \ \left(4.10\right)\\\left[ Z_{i}^{\alpha}\right] & =\left[ Z_{i\beta}\right] \left[ S^{\alpha\beta}\right] ,\ \ \ \ \ \ \ \ \ \ \left(4.11\right)\end{aligned}
where justifying the order of the terms in the matrix products is left as an exercise. Note that, technically, the above products should involve [Sαβ]T\left[ S^{\alpha\beta}\right] ^{T}, however the transpose is not necessary since [Sαβ]\left[ S^{\alpha\beta}\right] is symmetric. Carrying out the matrix products, we find
[Ziα]=[Ziα]=[R1cosθcosφR1sin1θsinφR1cosθsinφR1sin1θcosφR1sinθ0].(4.12)\left[ Z^{i\alpha}\right] =\left[ Z_{i}^{\alpha}\right] =\left[ \begin{array} {ll} \phantom{-} R^{-1}\cos\theta\cos\varphi & -R^{-1}\sin^{-1}\theta\sin\varphi\\ \phantom{-} R^{-1}\cos\theta\sin\varphi & \phantom{-} R^{-1}\sin^{-1}\theta\cos\varphi\\ -R^{-1}\sin\theta & \phantom{-} 0 \end{array} \right] .\tag{4.12}
Let us now turn our attention to calculating the components NiN^{i} of the unit normal. This can be accomplished in two ways. First, recall the normalization condition
NiZiα=0(3.134)N^{i}Z_{i\alpha}=0 \tag{3.134}
which, in matrix form, reads
[Ni][Ziα]=0.(4.13)\left[ N^{i}\right] \left[ Z_{i\alpha}\right] =0.\tag{4.13}
It tells us that [Ni]\left[ N^{i}\right] is contained in the null space of the matrix [Ziα]T\left[ Z_{i\alpha}\right] ^{T}. Thus, [Ni]\left[ N^{i}\right] can be calculated by determining the null space of [Ziα]T\left[ Z_{i\alpha }\right] ^{T} and then normalizing it to unit length. It is left as an exercise to show that the transposes of the matrices corresponding to all four forms of the shift tensor, i.e. ZαiZ_{\alpha}^{i}, ZiαZ_{i\alpha}, ZiαZ_{i}^{\alpha}, and ZiαZ^{i\alpha}, have the same null space. Furthermore, calculating NiN^{i} by this approach is also left as an exercise.
Second, the components NiN^{i} can be calculated by evaluating the cross product of the vectors S1\mathbf{S}_{1} and S2\mathbf{S}_{2}, once again followed by normalization to unity. As we discussed in Chapter 3, the components of S1\mathbf{S}_{1} and S2\mathbf{S}_{2} are contained in the columns of the matrix
[Ziα]=[RcosθcosφRsinθsinφRcosθsinφRsinθcosφRsinθ0].(4.14)\left[ Z_{i\alpha}\right] =\left[ \begin{array} {ll} \phantom{-} R\cos\theta\cos\varphi & -R\sin\theta\sin\varphi\\ \phantom{-} R\cos\theta\sin\varphi & \phantom{-} R\sin\theta\cos\varphi\\ -R\sin\theta & 0 \end{array} \right] .\tag{4.14}
In anticipation of the normalization step, we can drop the factors of RR from [Ziα]\left[ Z_{i\alpha}\right] in the cross product calculation. Therefore, we have
Ndet[icosθcosφsinθsinφjcosθsinφsinθcosφksinθ0]          (4.15)=isin2θcosφ+jsin2θsinφ+kcosθsinθ.          (4.16)\begin{aligned}\mathbf{N} & \sim\det\left[ \begin{array} {ccc} \mathbf{i} & \phantom{-} \cos\theta\cos\varphi & -\sin\theta\sin\varphi\\ \mathbf{j} & \phantom{-} \cos\theta\sin\varphi & \phantom{-} \sin\theta\cos\varphi\\ \mathbf{k} & -\sin\theta & 0 \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.15\right)\\& =\mathbf{i}\sin^{2}\theta\cos\varphi+\mathbf{j}\sin^{2}\theta\sin \varphi+\mathbf{k}\cos\theta\sin\theta.\ \ \ \ \ \ \ \ \ \ \left(4.16\right)\end{aligned}
The length of the resulting vector is sinθ\sin\theta. Thus, dividing by sinθ\sin\theta, we find
N=isinθcosφ+jsinθsinφ+kcosθ(4.17)\mathbf{N}=\mathbf{i}\sin\theta\cos\varphi+\mathbf{j}\sin\theta\sin \varphi+\mathbf{k}\cos\theta\tag{4.17}
or
[Ni]=[sinθcosφsinθsinφcosθ].(4.18)\left[ N^{i}\right] =\left[ \begin{array} {l} \sin\theta\cos\varphi\\ \sin\theta\sin\varphi\\ \cos\theta \end{array} \right] .\tag{4.18}
Finally, note that for a sphere, the components NiN^{i} could have also been easily guessed from geometric considerations as we know that N\mathbf{N} is a unit vector pointing in the radial direction and is therefore collinear with the position vector R\mathbf{R} if the latter emanates from the center of the sphere.
The last remaining object to be calculated is the surface Christoffel symbol Γαβγ\Gamma_{\alpha\beta}^{\gamma}. Recall that the relationship between the surface and the ambient Christoffel symbols reads
Γαβγ=ΓijkZαiZβjZkγ+ZiγZαiSβ,(3.125)\Gamma_{\alpha\beta}^{\gamma}=\Gamma_{ij}^{k}Z_{\alpha}^{i}Z_{\beta}^{j} Z_{k}^{\gamma}+Z_{i}^{\gamma}\frac{\partial Z_{\alpha}^{i}}{\partial S^{\beta }}, \tag{3.125}
which reduces to
Γαβγ=ZiγZαiSβ(3.126)\Gamma_{\alpha\beta}^{\gamma}=Z_{i}^{\gamma}\frac{\partial Z_{\alpha}^{i} }{\partial S^{\beta}} \tag{3.126}
when the ambient space is referred to affine coordinates, which is the case here. The above identity has three free indices α\alpha, β\beta, and γ\gamma and, therefore, cannot be captured by a matrix identity. In order to continue using matrix algebra, we need to fix the value of one of the free indices. We will choose β\beta for this role and consider β=1\beta=1 and β=2\beta=2 separately. Since S1=θS^{1}=\theta and S2=φS^{2}=\varphi, we have
Γα1γ=ZiγZαiθ   and    Γα2γ=ZiγZαiφ.(4.19)\Gamma_{\alpha1}^{\gamma}=Z_{i}^{\gamma}\frac{\partial Z_{\alpha}^{i} }{\partial\theta}\text{\ \ \ and \ \ \ }\Gamma_{\alpha2}^{\gamma} =Z_{i}^{\gamma}\frac{\partial Z_{\alpha}^{i}}{\partial\varphi}.\tag{4.19}
The elements of Zαi/θ\partial Z_{\alpha}^{i}/\partial\theta are obtained by differentiating [Zαi]\left[ Z_{\alpha}^{i}\right] with respect to θ\theta, i.e.
[Zαiθ]=[RsinθcosφRcosθsinφRsinθsinφRcosθcosφRcosθ0].(4.20)\left[ \frac{\partial Z_{\alpha}^{i}}{\partial\theta}\right] =\left[ \begin{array} {ll} -R\sin\theta\cos\varphi & -R\cos\theta\sin\varphi\\ -R\sin\theta\sin\varphi & \phantom{-} R\cos\theta\cos\varphi\\ -R\cos\theta & \phantom{-} 0 \end{array} \right] .\tag{4.20}
Since
[Γα1γ]=[Ziγ]T[Zαiθ],(4.21)\left[ \Gamma_{\alpha1}^{\gamma}\right] =\left[ Z_{i}^{\gamma}\right] ^{T}\left[ \frac{\partial Z_{\alpha}^{i}}{\partial\theta}\right] ,\tag{4.21}
we find
[Γα1γ]=[000cotθ].(4.22)\left[ \Gamma_{\alpha1}^{\gamma}\right] =\left[ \begin{array} {cc} 0 & 0\\ 0 & \cot\theta \end{array} \right] .\tag{4.22}
Meanwhile, the elements of Zαi/φ\partial Z_{\alpha}^{i}/\partial\varphi are obtained by differentiating [Zαi]\left[ Z_{\alpha}^{i}\right] with respect to φ\varphi, i.e.
[Zαiφ]=[RcosθsinφRsinθcosφRcosθcosφRsinθsinφ00].(4.23)\left[ \frac{\partial Z_{\alpha}^{i}}{\partial\varphi}\right] =\left[ \begin{array} {ll} -R\cos\theta\sin\varphi & -R\sin\theta\cos\varphi\\ \phantom{-} R\cos\theta\cos\varphi & -R\sin\theta\sin\varphi\\ 0 & 0 \end{array} \right] .\tag{4.23}
As before, since
[Γα2γ]=[Ziγ]T[Zαiφ],(4.24)\left[ \Gamma_{\alpha2}^{\gamma}\right] =\left[ Z_{i}^{\gamma}\right] ^{T}\left[ \frac{\partial Z_{\alpha}^{i}}{\partial\varphi}\right] ,\tag{4.24}
we find
[Γα2γ]=[0sinθcosθcotθ0].(4.25)\left[ \Gamma_{\alpha2}^{\gamma}\right] =\left[ \begin{array} {cc} 0 & -\sin\theta\cos\theta\\ \cot\theta & 0 \end{array} \right] .\tag{4.25}
In summary, the three nonzero elements of Γαβγ\Gamma_{\alpha\beta}^{\gamma} are
Γ221=sinθcosθ    and          (4.26)Γ122=Γ212=cotθ.          (4.27)\begin{aligned}\Gamma_{22}^{1} & =-\sin\theta\cos\theta\text{ \ \ \ and}\ \ \ \ \ \ \ \ \ \ \left(4.26\right)\\\Gamma_{12}^{2} & =\Gamma_{21}^{2}=\cot\theta.\ \ \ \ \ \ \ \ \ \ \left(4.27\right)\end{aligned}
This completes our analysis of a sphere of radius RR in Cartesian ambient coordinates. We will now repeat the same analysis in spherical ambient coordinates and it will be particularly interesting to observe what changes and what stays the same.

4.1.2In spherical ambient coordinates

Let us now perform the parallel analysis using the same coordinates θ,φ\theta,\varphi on the surface and spherical coordinates r,θ1,φ1r,\theta _{1},\varphi_{1} in the ambient space. Recall that for this combination of coordinate systems, a sphere of radius RR is described by the exceedingly simple equations
r(θ,φ)=R          (3.11)θ1(θ,φ)=θ          (3.12)φ1(θ,φ)=φ.          (3.13)\begin{aligned}r\left( \theta,\varphi\right) & =R\ \ \ \ \ \ \ \ \ \ \left(3.11\right)\\\theta_{1}\left( \theta,\varphi\right) & =\theta\ \ \ \ \ \ \ \ \ \ \left(3.12\right)\\\varphi_{1}\left( \theta,\varphi\right) & =\varphi. \ \ \ \ \ \ \ \ \ \ \left(3.13\right)\end{aligned}
The ambient covariant metric tensor ZijZ_{ij}, on the other hand, is more complicated than in the case of Cartesian coordinates. It was calculated in Section TBD of Introduction to Tensor Calculus where we showed that it corresponds to the matrix
[Zij]=[1000R2000R2sin2θ].(4.28)\left[ Z_{ij}\right] =\left[ \begin{array} {ccc} 1 & 0 & 0\\ 0 & R^{2} & 0\\ 0 & 0 & R^{2}\sin^{2}\theta \end{array} \right] .\tag{4.28}
Thus, the contravariant metric tensor ZijZ^{ij} corresponds to
[Zij]=[1000R2000R2sin2θ],(4.29)\left[ Z^{ij}\right] =\left[ \begin{array} {ccc} 1 & 0 & 0\\ 0 & R^{-2} & 0\\ 0 & 0 & R^{-2}\sin^{-2}\theta \end{array} \right] ,\tag{4.29}
The shift tensor ZαiZ_{\alpha}^{i} is obtained by differentiating the equations of the surface with respect to θ\theta and φ\varphi and has the exceedingly simple form
[Zαi]=[001001].(4.30)\left[ Z_{\alpha}^{i}\right] =\left[ \begin{array} {rr} 0 & 0\\ 1 & 0\\ 0 & 1 \end{array} \right] .\tag{4.30}
Since the metric tensor [Zij]\left[ Z_{ij}\right] does not correspond to the identity matrix, the shift tensor ZiαZ_{i\alpha} corresponds to a different matrix compared to ZαiZ_{\alpha}^{i}. Since
Ziα=ZijZαj,(4.31)Z_{i\alpha}=Z_{ij}Z_{\alpha}^{j},\tag{4.31}
we have
[Ziα]=[Zij][Zαj](4.32)\left[ Z_{i\alpha}\right] =\left[ Z_{ij}\right] \left[ Z_{\alpha} ^{j}\right]\tag{4.32}
which yields
[Ziα]=[00R200R2sin2θ].(4.33)\left[ Z_{i\alpha}\right] =\left[ \begin{array} {cc} 0 & 0\\ R^{2} & 0\\ 0 & R^{2}\sin^{2}\theta \end{array} \right] .\tag{4.33}
The covariant metric tensor SαβS_{\alpha\beta} is related to the shift tensors ZiαZ_{i\alpha} and ZβiZ_{\beta}^{i} by the equation
Sαβ=ZiαZβi.(3.113)S_{\alpha\beta}=Z_{i\alpha}Z_{\beta}^{i}. \tag{3.113}
Therefore, we have
[Sαβ]=[Ziα]T[Zβi]=[R200R2sin2θ].(4.34)\left[ S_{\alpha\beta}\right] =\left[ Z_{i\alpha}\right] ^{T}\left[ Z_{\beta}^{i}\right] =\left[ \begin{array} {cc} R^{2} & 0\\ 0 & R^{2}\sin^{2}\theta \end{array} \right] .\tag{4.34}
Crucially, we have arrived at the same values as before. This is entirely to be expected since SαβS_{\alpha\beta} does not depend on the choice of the ambient coordinates. Thus, the contravariant metric tensor SαβS^{\alpha\beta} and the area element S\sqrt{S} also have the same value as before and need not be documented here.
Now we can calculate the two remaining forms of the shift tensor. The contravariant form ZiαZ^{i\alpha} is given by
Ziα=SαβZβi(4.35)Z^{i\alpha}=S^{\alpha\beta}Z_{\beta}^{i}\tag{4.35}
and therefore corresponds to the matrix product [Zαi][Sαβ]\left[ Z_{\alpha} ^{i}\right] \left[ S^{\alpha\beta}\right] which yields
[Ziα]=[00R200R2sin2θ].(4.36)\left[ Z^{i\alpha}\right] =\left[ \begin{array} {ll} 0 & 0\\ R^{-2} & 0\\ 0 & R^{-2}\sin^{-2}\theta \end{array} \right] .\tag{4.36}
Finally, ZiαZ_{i}^{\alpha} is given by
Ziα=ZijZjα(4.37)Z_{i}^{\alpha}=Z_{ij}Z^{j\alpha}\tag{4.37}
and therefore corresponds to the product [Zij][Ziα]\left[ Z_{ij}\right] \left[ Z^{i\alpha}\right] which yields
[Ziα]=[001001].(4.38)\left[ Z_{i}^{\alpha}\right] =\left[ \begin{array} {cc} 0 & 0\\ 1 & 0\\ 0 & 1 \end{array} \right] .\tag{4.38}
It is interesting to note that ZαiZ_{\alpha}^{i} and ZiαZ_{i}^{\alpha} have identical values, which is not true in general. It is left as an exercise to explain why it makes sense in this case by considering the relationships between the contravariant surface and ambient space bases.
The components NiN^{i} of the normal are, once again, easy to guess, since the (exterior) unit normal N\mathbf{N} coincides with the ambient basis vector Z1\mathbf{Z}_{1} Therefore, the components NiN^{i} are given by
[Ni]=[100].(4.39)\left[ N^{i}\right] =\left[ \begin{array} {c} 1\\ 0\\ 0 \end{array} \right] .\tag{4.39}
Note that this result could have also been obtained either from the null space of the matrix
[Ziα]T=[00R200R2sin2θ]T=[0R2000R2sin2θ](4.40)\left[ Z_{i\alpha}\right] ^{T}=\left[ \begin{array} {cc} 0 & 0\\ R^{2} & 0\\ 0 & R^{2}\sin^{2}\theta \end{array} \right] ^{T}=\left[ \begin{array} {ccc} 0 & R^{2} & 0\\ 0 & 0 & R^{2}\sin^{2}\theta \end{array} \right]\tag{4.40}
or by calculating the cross product of S1\mathbf{S}_{1} and S2\mathbf{S}_{2}.
Finally, although we already know the elements of the Christoffel symbol Γαβγ\Gamma_{\alpha\beta}^{\gamma}, it will be interesting to calculate them again since this time, it is the first term on the right in the identity
Γαβγ=ΓijkZαiZβjZkγ+ZiγZαiSβ(3.125)\Gamma_{\alpha\beta}^{\gamma}=\Gamma_{ij}^{k}Z_{\alpha}^{i}Z_{\beta}^{j} Z_{k}^{\gamma}+Z_{i}^{\gamma}\frac{\partial Z_{\alpha}^{i}}{\partial S^{\beta }} \tag{3.125}
that survives. Indeed, the second term vanishes since the elements of the shift tensor ZαiZ_{\alpha}^{i} are constants. Therefore, we have
Γαβγ=ΓijkZαiZβjZkγ.(4.41)\Gamma_{\alpha\beta}^{\gamma}=\Gamma_{ij}^{k}Z_{\alpha}^{i}Z_{\beta}^{j} Z_{k}^{\gamma}.\tag{4.41}
Once again, matrix algebra cannot capture all aspects of the above identity. We therefore again have to fix the values of some of the indices. Let us choose γ\gamma and consider γ=1\gamma=1 and γ=2\gamma=2 separately. For γ=1\gamma=1, we have
Γαβ1=ΓijkZαiZβjZk1(4.42)\Gamma_{\alpha\beta}^{1}=\Gamma_{ij}^{k}Z_{\alpha}^{i}Z_{\beta}^{j}Z_{k}^{1}\tag{4.42}
while for γ=2\gamma=2, we have
Γαβ2=ΓijkZαiZβjZk2.(4.43)\Gamma_{\alpha\beta}^{2}=\Gamma_{ij}^{k}Z_{\alpha}^{i}Z_{\beta}^{j}Z_{k}^{2}.\tag{4.43}
Recall that
[Zkα]=[001001].(4.38)\left[ Z_{k}^{\alpha}\right] =\left[ \begin{array} {cc} 0 & 0\\ 1 & 0\\ 0 & 1 \end{array} \right] . \tag{4.38}
Thus, the only nonzero element in Zk1Z_{k}^{1} is Z21=1Z_{2}^{1}=1 and the only nonzero element of Zk2Z_{k}^{2} is Z32=1Z_{3}^{2}=1. Thus expressions for Γαβ1\Gamma_{\alpha\beta}^{1} and Γαβ2\Gamma_{\alpha\beta}^{2} are given by the simplified equations
Γαβ1=Γij2ZαiZβj, and          (4.44)Γαβ2=Γij3ZαiZβj,          (4.45)\begin{aligned}\Gamma_{\alpha\beta}^{1} & =\Gamma_{ij}^{2}Z_{\alpha}^{i}Z_{\beta} ^{j}\text{, and}\ \ \ \ \ \ \ \ \ \ \left(4.44\right)\\\Gamma_{\alpha\beta}^{2} & =\Gamma_{ij}^{3}Z_{\alpha}^{i}Z_{\beta}^{j},\ \ \ \ \ \ \ \ \ \ \left(4.45\right)\end{aligned}
which can be handled by matrix algebra. Recall that the nonzero elements of the ambient Christoffel symbol Γijk\Gamma_{ij}^{k} are
Γ221=r          (6.45)Γ331=rsin2θ          (6.45)Γ122=Γ212=r1          (6.45)Γ332=sinθcosθ          (6.45)Γ133=Γ313=r1          (6.45)Γ233=Γ323=cotθ.          (6.45)\begin{aligned}\Gamma_{22}^{1} & =-r\ \ \ \ \ \ \ \ \ \ \left(6.45\right)\\\Gamma_{33}^{1} & =-r\sin^{2}\theta\ \ \ \ \ \ \ \ \ \ \left(6.45\right)\\\Gamma_{12}^{2} & =\Gamma_{21}^{2}=r^{-1}\ \ \ \ \ \ \ \ \ \ \left(6.45\right)\\\Gamma_{33}^{2} & =-\sin\theta\cos\theta\ \ \ \ \ \ \ \ \ \ \left(6.45\right)\\\Gamma_{13}^{3} & =\Gamma_{31}^{3}=r^{-1}\ \ \ \ \ \ \ \ \ \ \left(6.45\right)\\\Gamma_{23}^{3} & =\Gamma_{32}^{3}=\cot\theta. \ \ \ \ \ \ \ \ \ \ \left(6.45\right)\end{aligned}
Organize the values of the systems Γij2\Gamma_{ij}^{2} and Γij3\Gamma_{ij}^{3} on the surface of the sphere into matrices, i.e.
[Γij2]=[0R10R10000sinθcosθ]          (4.46)[Γij3]=[00R100cotθR1cotθ0]          (4.47)\begin{aligned}\left[ \Gamma_{ij}^{2}\right] & =\left[ \begin{array} {ccc} 0 & R^{-1} & 0\\ R^{-1} & 0 & 0\\ 0 & 0 & -\sin\theta\cos\theta \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.46\right)\\\left[ \Gamma_{ij}^{3}\right] & =\left[ \begin{array} {ccc} 0 & 0 & R^{-1}\\ 0 & 0 & \cot\theta\\ R^{-1} & \cot\theta & 0 \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.47\right)\end{aligned}
With the help of these matrices, we have
[Γαβ1]=[Zαi]T[Γij2][Zαi]=[000cosθsinθ](4.48)\left[ \Gamma_{\alpha\beta}^{1}\right] =\left[ Z_{\alpha}^{i}\right] ^{T}\left[ \Gamma_{ij}^{2}\right] \left[ Z_{\alpha}^{i}\right] =\left[ \begin{array} {cc} 0 & 0\\ 0 & -\cos\theta\sin\theta \end{array} \right]\tag{4.48}
and
[Γαβ2]=[Zαi]T[Γij3][Zαi]=[0cotθcotθ0].(4.49)\left[ \Gamma_{\alpha\beta}^{2}\right] =\left[ Z_{\alpha}^{i}\right] ^{T}\left[ \Gamma_{ij}^{3}\right] \left[ Z_{\alpha}^{i}\right] =\left[ \begin{array} {cc} 0 & \cot\theta\\ \cot\theta & 0 \end{array} \right] .\tag{4.49}
Collecting the nonzero elements of Γαβγ\Gamma_{\alpha\beta}^{\gamma}, we observe that we have arrived at the same values as before, i.e.
Γ221=sinθcosθ          (4.26)Γ122=Γ212=cotθ.          (4.27)\begin{aligned}\Gamma_{22}^{1} & =-\sin\theta\cos\theta\ \ \ \ \ \ \ \ \ \ \left(4.26\right)\\\Gamma_{12}^{2} & =\Gamma_{21}^{2}=\cot\theta. \ \ \ \ \ \ \ \ \ \ \left(4.27\right)\end{aligned}
This completes our analysis of a sphere of radius RR.
Consider a cylinder of radius RR referred to coordinates z,θz,\theta illustrated in the following figure.
(3.14)
As was the case with a sphere, a cylinder can also be effectively analyzed by referring the ambient space either to Cartesian or cylindrical coordinates. We will choose Cartesian coordinates x,y,z1x,y,z_{1} and save cylindrical coordinates for the exercises. Recall that the equations of the surface read
x(θ,z)=Rcosθ          (3.15)y(θ,z)=Rsinθ          (3.16)z1(θ,z)=z.          (3.17)\begin{aligned}x\left( \theta,z\right) & =R\cos\theta\ \ \ \ \ \ \ \ \ \ \left(3.15\right)\\y\left( \theta,z\right) & =R\sin\theta\ \ \ \ \ \ \ \ \ \ \left(3.16\right)\\z_{1}\left( \theta,z\right) & =z. \ \ \ \ \ \ \ \ \ \ \left(3.17\right)\end{aligned}
Once again, the ambient metric tensors ZijZ_{ij} and ZijZ^{ij} corresponds to the 3×33\times3 identity matrix
[Zij]=[Zij]=[100010001],(4.50)\left[ Z_{ij}\right] =\left[ Z^{ij}\right] =\left[ \begin{array} {ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right] ,\tag{4.50}
and thus, once again, the placement of the ambient indices has no effect on the values of any of the variants.
The shift tensors ZαiZ_{\alpha}^{i} and ZiαZ_{i}^{\alpha} are obtained by differentiating the equations of the surface with respect to θ\theta and zz, which yields
[Zαi]=[Ziα]=[Rsinθ0Rcosθ001].(4.51)\left[ Z_{\alpha}^{i}\right] =\left[ Z_{i\alpha}\right] =\left[ \begin{array} {ll} -R\sin\theta & 0\\ \phantom{-} R\cos\theta & 0\\ \phantom{-} 0 & 1 \end{array} \right] .\tag{4.51}
The surface metric tensor SαβS_{\alpha\beta} is given by
Sαβ=ZiαZβi(3.114)S_{\alpha\beta}=Z_{i\alpha}Z_{\beta}^{i} \tag{3.114}
and therefore
[Sαβ]=[Ziα]T[Zβi]=[R2001],(4.52)\left[ S_{\alpha\beta}\right] =\left[ Z_{i\alpha}\right] ^{T}\left[ Z_{\beta}^{i}\right] =\left[ \begin{array} {cc} R^{2} & 0\\ 0 & 1 \end{array} \right] ,\tag{4.52}
while
[Sαβ]=[Sαβ]1=[1R2001].(4.53)\left[ S^{\alpha\beta}\right] =\left[ S_{\alpha\beta}\right] ^{-1}=\left[ \begin{array} {cc} \frac{1}{R^{2}} & 0\\ 0 & 1 \end{array} \right] .\tag{4.53}
The area element S\sqrt{S} is the square root of the determinant of [Sαβ]\left[ S_{\alpha\beta}\right] , i.e.
S=R.(4.54)\sqrt{S}=R.\tag{4.54}
Notice that the elements of the metric tensors have constant values, which is a signature feature of affine coordinates. The fact that a cylinder admits such a coordinate system distinguishes it from all the other two-dimensional surfaces discussed in this Chapter. This fact means that, in a certain sense, a cylinder represents a Euclidean space. On the one hand, this makes sense, since a cylinder can be cut along a line of constant θ\theta and uncurled, without any distortion, into a flat strip. On the other hand, a cylinder is a curved surface that cannot accommodate straight lines, except in one special direction. Understanding this dichotomy will be one of the goals of our study of curvature.
Let us now return to the calculation of the remaining differential objects. The shift tensors Ziα=SαβZβiZ^{i\alpha}=S^{\alpha\beta}Z_{\beta}^{i} and Ziα=SαβZiβZ_{i}^{\alpha}=S^{\alpha\beta}Z_{i\beta} correspond to the matrix product [Zαi][Sαβ]\left[ Z_{\alpha}^{i}\right] \left[ S^{\alpha\beta}\right] which yields
[Ziα]=[Ziα]=[R1sinθ0R1cosθ001](4.55)\left[ Z^{i\alpha}\right] =\left[ Z_{i}^{\alpha}\right] =\left[ \begin{array} {ll} -R^{-1}\sin\theta & 0\\ \phantom{-} R^{-1}\cos\theta & 0\\ \phantom{-} 0 & 1 \end{array} \right]\tag{4.55}
As was the case with the sphere, the components NiN^{i} of the unit normal can be determined from the null space of [Ziα]\left[ Z_{i\alpha}\right] , by calculating the cross product of S1\mathbf{S}_{1} and S2\mathbf{S}_{2}, or simply by intuiting from general geometric considerations. In any case, the components NiN^{i} correspond to the matrix
[Ni]=[cosθsinθ0].(4.56)\left[ N^{i}\right] =\left[ \begin{array} {r} \cos\theta\\ \sin\theta\\ 0 \end{array} \right] .\tag{4.56}
Since the elements of the metric tensors are constant, the Christoffel symbol Γαβγ\Gamma_{\alpha\beta}^{\gamma} vanishes at all points, i.e.
Γαβγ=0,(4.57)\Gamma_{\alpha\beta}^{\gamma}=0,\tag{4.57}
which can also be described as a signature characteristic of an affine coordinate system.
This completes our analysis of a cylinder and we will now turn our attention to the more general surfaces of revolution.
A sphere and a cylinder are both examples of surfaces of revolution. Thus, the analysis presented in this Section represents a generalization of the preceding two Sections.
  (3.21)
We will refer the ambient space to Cartesian coordinates and will invite the reader to repeat the analysis in cylindrical coordinates as an exercise. In Cartesian coordinates x,y,zx,y,z, the equations of a surface of revolution read
x(θ,γ)=G(γ)cosθ          (3.22)y(θ,γ)=G(γ)sinθ          (3.23)z(θ,γ)=H(γ)          (3.24)\begin{aligned}x\left( \theta,\gamma\right) & =G\left( \gamma\right) \cos\theta\ \ \ \ \ \ \ \ \ \ \left(3.22\right)\\y\left( \theta,\gamma\right) & =G\left( \gamma\right) \sin\theta\ \ \ \ \ \ \ \ \ \ \left(3.23\right)\\z\left( \theta,\gamma\right) & =H\left( \gamma\right) \ \ \ \ \ \ \ \ \ \ \left(3.24\right)\end{aligned}
Since we have already performed several similar analyses, we will begin to omit some of the details in the upcoming calculations. Filling in those details will be left as exercises.
The shift tensors ZαiZ_{\alpha}^{i} and ZiαZ_{i\alpha} are obtained by differentiating the equations of the surface with respect to θ\theta and γ\gamma, which yields
[Zαi]=[Ziα]=[GsinθGγcosθGcosθGγsinθ0Hγ],(4.58)\left[ Z_{\alpha}^{i}\right] =\left[ Z_{i\alpha}\right] =\left[ \begin{array} {ll} -G\sin\theta & G_{\gamma}\cos\theta\\ \phantom{-} G\cos\theta & G_{\gamma}\sin\theta\\ \phantom{-} 0 & H_{\gamma} \end{array} \right] ,\tag{4.58}
where GγG_{\gamma} and HγH_{\gamma} denote the derivatives of the functions GG and HH.
For the covariant and the contravariant metric tensors, we have
Sαβ=[Zαi]T[Zβj]=[G200Gγ2+Hγ2]    and          (4.59)Sαβ=[Sαβ]1=[1G2001Gγ2+Hγ2].          (4.60)\begin{aligned}S_{\alpha\beta} & =\left[ Z_{\alpha}^{i}\right] ^{T}\left[ Z_{\beta} ^{j}\right] =\left[ \begin{array} {cc} G^{2} & 0\\ 0 & G_{\gamma}^{2}+H_{\gamma}^{2} \end{array} \right] \text{ \ \ \ and}\ \ \ \ \ \ \ \ \ \ \left(4.59\right)\\S^{\alpha\beta} & =\left[ S_{\alpha\beta}\right] ^{-1}=\left[ \begin{array} {cc} \frac{1}{G^{2}} & 0\\ 0 & \frac{1}{G_{\gamma}^{2}+H_{\gamma}^{2}} \end{array} \right] .\ \ \ \ \ \ \ \ \ \ \left(4.60\right)\end{aligned}
The area element S\sqrt{S} is given by
S=det[Sαβ]=GGγ2+Hγ2.(4.61)\sqrt{S}=\sqrt{\det\left[ S_{\alpha\beta}\right] }=G\sqrt{G_{\gamma} ^{2}+H_{\gamma}^{2}}.\tag{4.61}
For the remaining forms ZiαZ^{i\alpha} and ZiαZ_{i}^{\alpha} of the shift tensor, we have
[Ziα]=[Ziα]=[Zαi][Sαβ]=[1GsinθGγcosθGγ2+Hγ21GcosθGγsinθGγ2+Hγ20HγGγ2+Hγ2].(4.62)\left[ Z^{i\alpha}\right] =\left[ Z_{i}^{\alpha}\right] =\left[ Z_{\alpha}^{i}\right] \left[ S^{\alpha\beta}\right] =\left[ \begin{array} {ll} -\frac{1}{G}\sin\theta & \frac{G_{\gamma}\cos\theta}{G_{\gamma}^{2}+H_{\gamma }^{2}}\\ \phantom{-} \frac{1}{G}\cos\theta & \frac{G_{\gamma}\sin\theta}{G_{\gamma}^{2}+H_{\gamma }^{2}}\\ \phantom{-} 0 & \frac{H_{\gamma}}{G_{\gamma}^{2}+H_{\gamma}^{2}} \end{array} \right] .\tag{4.62}
For the components NiN^{i} of the normal, which can be determined by any of the approaches described above, we have
[Ni]=1Gγ2+Hγ2[HγcosθHγsinθGγ].(4.63)\left[ N^{i}\right] =\frac{1}{\sqrt{G_{\gamma}^{2}+H_{\gamma}^{2}}}\left[ \begin{array} {l} \phantom{-} H_{\gamma}\cos\theta\\ \phantom{-} H_{\gamma}\sin\theta\\ -G_{\gamma} \end{array} \right] .\tag{4.63}
The nonzero elements of the Christoffel symbol Γβγα\Gamma_{\beta\gamma}^{\alpha} are
Γ121=Γ211=GγG          (4.64)Γ112=GGγGγ2+Hγ2          (4.65)Γ222=GγGγγ+HγHγγGγ2+Hγ2.          (4.66)\begin{aligned}\Gamma_{12}^{1} & =\Gamma_{21}^{1}=\frac{G_{\gamma}}{G}\ \ \ \ \ \ \ \ \ \ \left(4.64\right)\\\Gamma_{11}^{2} & =-\frac{GG_{\gamma}}{G_{\gamma}^{2}+H_{\gamma}^{2}}\ \ \ \ \ \ \ \ \ \ \left(4.65\right)\\\Gamma_{22}^{2} & =\frac{G_{\gamma}G_{\gamma\gamma}+H_{\gamma} H_{\gamma\gamma}}{G_{\gamma}^{2}+H_{\gamma}^{2}}.\ \ \ \ \ \ \ \ \ \ \left(4.66\right)\end{aligned}
The findings of this Section will pay instant dividends as we turn our attention to another shape of revolution: a torus.
A torus with radii RR and rr is a shape of revolution obtained by rotating a circle of radius rr around an axis that is a distance RR from the center of the circle. Note that, unlike other Sections where the symbol rr denotes one of the ambient coordinates, in this Section, rr is a constant parameter.
(4.67)
Within its plane, the circle is described by the equations
G(φ)=R+rcosφ          (4.68)H(φ)=rsinφ.          (4.69)\begin{aligned}G\left( \varphi\right) & =R+r\cos\varphi\ \ \ \ \ \ \ \ \ \ \left(4.68\right)\\H\left( \varphi\right) & =r\sin\varphi.\ \ \ \ \ \ \ \ \ \ \left(4.69\right)\end{aligned}
The following figure illustrates the resulting surface coordinates θ\theta and φ\varphi. Note that both coordinates vary from 00 to 2π2\pi.
(4.70)
When the ambient space is referred to Cartesian coordinates x,y,zx,y,z, the equations of the torus read
x(θ,φ)=(R+rcosφ)cosθ          (3.32)y(θ,φ)=(R+rcosφ)sinθ          (3.34)z(θ,φ)=rsinφ.          (3.35)\begin{aligned}x\left( \theta,\varphi\right) & =\left( R+r\cos\varphi\right) \cos \theta\ \ \ \ \ \ \ \ \ \ \left(3.32\right)\\y\left( \theta,\varphi\right) & =\left( R+r\cos\varphi\right) \sin \theta\ \ \ \ \ \ \ \ \ \ \left(3.34\right)\\z\left( \theta,\varphi\right) & =r\sin\varphi. \ \ \ \ \ \ \ \ \ \ \left(3.35\right)\end{aligned}
All of the following identities can be obtained as special cases of the equations from the previous Section on surfaces of revolution. Therefore, we will catalogue the results without further clarifications.
The shift tensors ZαiZ_{\alpha}^{i} and ZiαZ_{i\alpha}:
[Zαi]=[Ziα]=[(R+rcosφ)sinθrcosθsinφ(R+rcosφ)cosθrsinθsinφ0rcosφ].(4.71)\left[ Z_{\alpha}^{i}\right] =\left[ Z_{i\alpha}\right] =\left[ \begin{array} {ll} -\left( R+r\cos\varphi\right) \sin\theta & -r\cos\theta\sin\varphi\\ \phantom{-} \left( R+r\cos\varphi\right) \cos\theta & -r\sin\theta\sin\varphi\\ \phantom{-} 0 & \phantom{-} r\cos\varphi \end{array} \right] .\tag{4.71}
The metric tensors SαβS_{\alpha\beta} and SαβS^{\alpha\beta}, and the area element S\sqrt{S}:
[Sαβ]=[(R+rcosφ)200r2]          (4.72)[Sαβ]= [(R+rcosφ)200r2]          (4.73)S=r(R+rcosφ).          (4.74)\begin{aligned}\left[ S_{\alpha\beta}\right] & =\left[ \begin{array} {cc} \left( R+r\cos\varphi\right) ^{2} & 0\\ 0 & r^{2} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.72\right)\\\left[ S^{\alpha\beta}\right] & =\ \left[ \begin{array} {cc} \left( R+r\cos\varphi\right) ^{-2} & 0\\ 0 & r^{-2} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.73\right)\\\sqrt{S} & =r\left( R+r\cos\varphi\right) .\ \ \ \ \ \ \ \ \ \ \left(4.74\right)\end{aligned}
With the help of the area element S\sqrt{S}, we can calculate the total area of the torus, i.e.
A=02π02πr(R+rcosφ)dθdφ=4π2Rr.(4.75)A=\int_{0}^{2\pi}\int_{0}^{2\pi}r\left( R+r\cos\varphi\right) d\theta d\varphi=4\pi^{2}Rr.\tag{4.75}
The shift tensors ZiαZ^{i\alpha} and ZiαZ_{i}^{\alpha}:
[Ziα]=[Ziα]=[(R+rcosφ)1sinθr1cosθsinφ(R+rcosφ)1cosθr1sinθsinφ0r1cosφ].(4.76)\left[ Z^{i\alpha}\right] =\left[ Z_{i}^{\alpha}\right] =\left[ \begin{array} {ll} -\left( R+r\cos\varphi\right) ^{-1}\sin\theta & -r^{-1}\cos\theta\sin \varphi\\ \phantom{-} \left( R+r\cos\varphi\right) ^{-1}\cos\theta & -r^{-1}\sin\theta\sin \varphi\\ \phantom{-} 0 & \phantom{-} r^{-1}\cos\varphi \end{array} \right] .\tag{4.76}
The components NiN^{i} of the normal:
[Ni]=[cosθcosφsinθcosφsinφ].(4.77)\left[ N^{i}\right] =\left[ \begin{array} {r} \cos\theta\cos\varphi\\ \sin\theta\cos\varphi\\ \sin\varphi \end{array} \right] .\tag{4.77}
And, finally, the nonzero elements of the Christoffel symbol Γαβγ\Gamma _{\alpha\beta}^{\gamma}:
Γ121=Γ211=rsinφR+rcosφ.          (4.78)Γ112=(R+rcosφ)sinφr          (4.79)\begin{aligned}\Gamma_{12}^{1} & =\Gamma_{21}^{1}=-\frac{r\sin\varphi}{R+r\cos\varphi}.\ \ \ \ \ \ \ \ \ \ \left(4.78\right)\\\Gamma_{11}^{2} & =\frac{\left( R+r\cos\varphi\right) \sin\varphi}{r}\ \ \ \ \ \ \ \ \ \ \left(4.79\right)\end{aligned}
This completes our analysis of two-dimensional surfaces embedded in a three-dimensional Euclidean space and we now turn our attention to curves in a two-dimensional Euclidean plane.
The theory that we have developed for surfaces applies, without any changes, to one-dimensional curves in a two-dimensional Euclidean plane. In fact, with the exception of the normal which requires the surface to be a hypersurface, all of the fundamental differential objects considered in this Chapter can be calculated for a curve embedded in a space of any dimension. We will, however, limit ourselves to curves in the plane here, and save the study of curves in a three-dimensional space for Chapter 8.

4.5.1In Cartesian coordinates

A one-dimensional curve is parameterized by a single coordinate S1S^{1} which we will denote by the letter γ\gamma. First, refer a two-dimensional plane to Cartesian coordinates x,yx,y and consider a general curve given by the equations
x=x(γ)          (4.80)y=y(γ).          (4.81)\begin{aligned}x & =x\left( \gamma\right)\ \ \ \ \ \ \ \ \ \ \left(4.80\right)\\y & =y\left( \gamma\right) .\ \ \ \ \ \ \ \ \ \ \left(4.81\right)\end{aligned}
In the equations that follow, the symbols xx and yy will refer to the functions x(γ)x\left( \gamma\right) and y(γ)y\left( \gamma\right) while xγx_{\gamma}, xγγx_{\gamma\gamma}, yγy_{\gamma}, and yγγy_{\gamma\gamma} will refer to the derivatives x(γ)x^{\prime}\left( \gamma\right) , x(γ)x^{\prime \prime}\left( \gamma\right) , y(γ)y^{\prime}\left( \gamma\right) , and y(γ)y^{\prime\prime}\left( \gamma\right) .
The ambient metric tensors ZijZ_{ij} and ZijZ^{ij} correspond to the 2×22\times2 identity matrix, i.e.
[Zij]=[Zij]=[1001].(4.82)\left[ Z_{ij}\right] =\left[ Z^{ij}\right] =\left[ \begin{array} {cc} 1 & 0\\ 0 & 1 \end{array} \right] .\tag{4.82}
The shift tensors ZαiZ_{\alpha}^{i} and ZiαZ_{i\alpha} are obtained by differentiating the equations of the curve with respect to γ\gamma, i.e.
[Zαi]=[Ziα]=[xγyγ].(4.83)\left[ Z_{\alpha}^{i}\right] =\left[ Z_{i\alpha}\right] =\left[ \begin{array} {c} x_{\gamma}\\ y_{\gamma} \end{array} \right] .\tag{4.83}
The surface metric tensor Sαβ=ZαiZiβS_{\alpha\beta}=Z_{\alpha}^{i}Z_{i\beta} corresponds to the matrix product [Zαi]T[Ziβ]\left[ Z_{\alpha}^{i}\right] ^{T}\left[ Z_{i\beta}\right] . The result is a 1×11\times1 matrix with a single entry. Nevertheless, we will continue to use brackets to denote the matrices. We have
[Sαβ]=[xγ2+yγ2].(4.84)\left[ S_{\alpha\beta}\right] =\left[ x_{\gamma}^{2}+y_{\gamma}^{2}\right] .\tag{4.84}
The contravariant surface metric tensor SαβS^{\alpha\beta} is the matrix inverse of SαβS_{\alpha\beta}. Since [Sαβ]\left[ S_{\alpha\beta}\right] is a 1×11\times1 matrix, its inverse consists of a single entry that is the reciprocal of the sole entry in [Sαβ]\left[ S_{\alpha\beta}\right] , i.e.
[Sαβ]=[1xγ2+yγ2].(4.85)\left[ S^{\alpha\beta}\right] =\left[ \frac{1}{x_{\gamma}^{2}+y_{\gamma }^{2}}\right] .\tag{4.85}
The determinant of the matrix [Sαβ]\left[ S_{\alpha\beta}\right] equals its only entry. Therefore, the length element S\sqrt{S} is given by the equation
S=xγ2+yγ2.(4.86)\sqrt{S}=\sqrt{x_{\gamma}^{2}+y_{\gamma}^{2}}.\tag{4.86}
This is a familiar expression that we have encountered on numerous occasions when studying curves.
The remaining forms of the shift tensor are
[Ziα]=[Ziα]=1xγ2+yγ2[xγyγ].(4.87)\left[ Z^{i\alpha}\right] =\left[ Z_{i}^{\alpha}\right] =\frac {1}{x_{\gamma}^{2}+y_{\gamma}^{2}}\left[ \begin{array} {c} x_{\gamma}\\ y_{\gamma} \end{array} \right] .\tag{4.87}
The single entry of the Christoffel symbol Γβγα\Gamma_{\beta\gamma}^{\alpha} is given by
Γ111=xγxγγ+yγyγγxγ2+yγ2.(4.88)\Gamma_{11}^{1}=\frac{x_{\gamma}x_{\gamma\gamma}+y_{\gamma}y_{\gamma\gamma} }{x_{\gamma}^{2}+y_{\gamma}^{2}}.\tag{4.88}
Finally, the components Ni N^{i}\ of the normal are given by
[Ni]=1xγ2+yγ2[yγxγ].(4.89)\left[ N^{i}\right] =\frac{1}{\sqrt{x_{\gamma}^{2}+y_{\gamma}^{2}}}\left[ \begin{array} {r} -y_{\gamma}\\ x_{\gamma} \end{array} \right] .\tag{4.89}
Let us now catalogue the values of the same objects for two special parameterizations. In the first one, use the arc length ss for the coordinate along the curve. Recall that
R(s)(4.90)\mathbf{R}^{\prime}\left( s\right)\tag{4.90}
represents a unit tangent vector. Since, xs=x(s)x_{s}=x^{\prime}\left( s\right) and ys=y(s)y_{s}=y^{\prime}\left( s\right) represent its components, we have
xs2+ys2=1.(4.91)x_{s}^{2}+y_{s}^{2}=1.\tag{4.91}
This identity leads to the simplifications found in the following table.
[Zαi]=[Ziα]=[Ziα]=[Ziα]=[xsys]          (4.92)[Sαβ]= [Sαβ]=[1]          (4.93)S=1          (4.94)Γ111=0          (4.95)[Ni]=[ysxs].          (4.96)\begin{aligned}\left[ Z_{\alpha}^{i}\right] & =\left[ Z_{i\alpha}\right] =\left[ Z_{i}^{\alpha}\right] =\left[ Z^{i\alpha}\right] =\left[ \begin{array} {c} x_{s}\\ y_{s} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.92\right)\\\left[ S_{\alpha\beta}\right] & =\ \left[ S^{\alpha\beta}\right] =\left[ 1\right]\ \ \ \ \ \ \ \ \ \ \left(4.93\right)\\\sqrt{S} & =1\ \ \ \ \ \ \ \ \ \ \left(4.94\right)\\\Gamma_{11}^{1} & =0\ \ \ \ \ \ \ \ \ \ \left(4.95\right)\\\left[ N^{i}\right] & =\left[ \begin{array} {r} -y_{s}\\ x_{s} \end{array} \right] .\ \ \ \ \ \ \ \ \ \ \left(4.96\right)\end{aligned}
For the second special case, consider a curve given by the graph of a function y=y(x)y=y\left( x\right) . Recall that such a curve is described by the parametric equations
x=γ          (4.97)y=y(γ).          (4.98)\begin{aligned}x & =\gamma\ \ \ \ \ \ \ \ \ \ \left(4.97\right)\\y & =y\left( \gamma\right) .\ \ \ \ \ \ \ \ \ \ \left(4.98\right)\end{aligned}
Using xx in place of γ\gamma, we have the results summarized in the following table.
[Zαi]=[Ziα]=[1yx]          (4.99)[Sαβ]=[1+yx2]          (4.100)[Sαβ]=[11+yx2]          (4.101)[Ziα]=[Ziα]=11+yx2[1yx]          (4.102)S=1+yx2          (4.103)Γ111=yxyxx1+yx2          (4.104)[Ni]=11+yx2[yx1].          (4.105)\begin{aligned}\left[ Z_{\alpha}^{i}\right] & =\left[ Z_{i\alpha}\right] =\left[ \begin{array} {c} 1\\ y_{x} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.99\right)\\\left[ S_{\alpha\beta}\right] & =\left[ 1+y_{x}^{2}\right]\ \ \ \ \ \ \ \ \ \ \left(4.100\right)\\\left[ S^{\alpha\beta}\right] & =\left[ \frac{1}{1+y_{x}^{2}}\right]\ \ \ \ \ \ \ \ \ \ \left(4.101\right)\\\left[ Z_{i}^{\alpha}\right] & =\left[ Z^{i\alpha}\right] =\frac {1}{1+y_{x}^{2}}\left[ \begin{array} {c} 1\\ y_{x} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.102\right)\\\sqrt{S} & =\sqrt{1+y_{x}^{2}}\ \ \ \ \ \ \ \ \ \ \left(4.103\right)\\\Gamma_{11}^{1} & =\frac{y_{x}y_{xx}}{1+y_{x}^{2}}\ \ \ \ \ \ \ \ \ \ \left(4.104\right)\\\left[ N^{i}\right] & =\frac{1}{\sqrt{1+y_{x}^{2}}}\left[ \begin{array} {r} -y_{x}\\ 1 \end{array} \right] .\ \ \ \ \ \ \ \ \ \ \left(4.105\right)\end{aligned}

4.5.2In polar coordinates

Now, suppose that the plane is referred to polar coordinates r,θr,\theta. A general curve is given by the parametric equations
r=r(γ)          (4.106)θ=θ(γ).          (4.107)\begin{aligned}r & =r\left( \gamma\right)\ \ \ \ \ \ \ \ \ \ \left(4.106\right)\\\theta & =\theta\left( \gamma\right) .\ \ \ \ \ \ \ \ \ \ \left(4.107\right)\end{aligned}
In the equations that follow, the symbols rr and θ\theta will refer to the functions r(γ)r\left( \gamma\right) and θ(γ)\theta\left( \gamma\right) while rγr_{\gamma}, rγγr_{\gamma\gamma}, θγ\theta_{\gamma}, and θγγ\theta_{\gamma \gamma} will refer to the derivatives r(γ)r^{\prime}\left( \gamma\right) , r(γ)r^{\prime\prime}\left( \gamma\right) , θ(γ)\theta^{\prime}\left( \gamma\right) , and θ(γ)\theta^{\prime\prime}\left( \gamma\right) .
The matrices corresponding to the ambient covariant and contravariant metric tensors ZijZ_{ij} and ZijZ^{ij} are
[Zij]=[100r2]          (4.108)[Zij]=[1001r2].          (4.109)\begin{aligned}\left[ Z_{ij}\right] & =\left[ \begin{array} {cc} 1 & 0\\ 0 & r^{2} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.108\right)\\\left[ Z^{ij}\right] & =\left[ \begin{array} {cc} 1 & 0\\ 0 & \frac{1}{r^{2}} \end{array} \right] .\ \ \ \ \ \ \ \ \ \ \left(4.109\right)\end{aligned}
For the shift tensor ZαiZ_{\alpha}^{i} and ZiαZ_{i\alpha}, we have
[Zαi]=[rγθγ]          (4.110)[Ziα]=[rγr2θγ].          (4.111)\begin{aligned}\left[ Z_{\alpha}^{i}\right] & =\left[ \begin{array} {c} r_{\gamma}\\ \theta_{\gamma} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.110\right)\\\left[ Z_{i\alpha}\right] & =\left[ \begin{array} {c} r_{\gamma}\\ r^{2}\theta_{\gamma} \end{array} \right] .\ \ \ \ \ \ \ \ \ \ \left(4.111\right)\end{aligned}
For the surface metric tensors SαβS_{\alpha\beta} and SαβS^{\alpha\beta}, we have
[Sαβ]=[rγ2+r2θγ2]          (4.112)[Sαβ]=[1rγ2+r2θγ2].          (4.113)\begin{aligned}\left[ S_{\alpha\beta}\right] & =\left[ r_{\gamma}^{2}+r^{2} \theta_{\gamma}^{2}\right]\ \ \ \ \ \ \ \ \ \ \left(4.112\right)\\\left[ S^{\alpha\beta}\right] & =\left[ \frac{1}{r_{\gamma}^{2} +r^{2}\theta_{\gamma}^{2}}\right] .\ \ \ \ \ \ \ \ \ \ \left(4.113\right)\end{aligned}
The line element S\sqrt{S} equals the sole entry of [Sαβ]\left[ S_{\alpha\beta }\right] , i.e.
S=rγ2+r2θγ2.(4.114)\sqrt{S}=\sqrt{r_{\gamma}^{2}+r^{2}\theta_{\gamma}^{2}}.\tag{4.114}
For the remaining forms ZiαZ^{i\alpha} and ZiαZ_{i}^{\alpha} of the shift tensor, we have
[Ziα]=1rγ2+r2θγ2[rγθγ]          (4.115)[Ziα]=1rγ2+r2θγ2[rγr2θγ]          (4.116)\begin{aligned}\left[ Z^{i\alpha}\right] & =\frac{1}{r_{\gamma}^{2}+r^{2}\theta_{\gamma }^{2}}\left[ \begin{array} {c} r_{\gamma}\\ \theta_{\gamma} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.115\right)\\\left[ Z_{i}^{\alpha}\right] & =\frac{1}{r_{\gamma}^{2}+r^{2} \theta_{\gamma}^{2}}\left[ \begin{array} {c} r_{\gamma}\\ r^{2}\theta_{\gamma} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.116\right)\end{aligned}
The Christoffel symbol Γβγα\Gamma_{\beta\gamma}^{\alpha} has the single entry
Γ111=rrγθγ2+rγrγγ+r2θγθγγrγ2+r2θγ2.(4.117)\Gamma_{11}^{1}=\frac{rr_{\gamma}\theta_{\gamma}^{2}+r_{\gamma}r_{\gamma \gamma}+r^{2}\theta_{\gamma}\theta_{\gamma\gamma}}{r_{\gamma}^{2}+r^{2} \theta_{\gamma}^{2}}.\tag{4.117}
Finally, for the components NiN^{i} of the normal, we have
[Ni]=1rγ2+r2θγ2[rθγr1rγ].(4.118)\left[ N^{i}\right] =\frac{1}{\sqrt{r_{\gamma}^{2}+r^{2}\theta_{\gamma}^{2} }}\left[ \begin{array} {r} r\theta_{\gamma}\\ -r^{-1}r_{\gamma} \end{array} \right] .\tag{4.118}
Let us again catalogue the same two special cases as in the case of Cartesian ambient coordinates. First, refer the curve to arc length ss. In terms of the symbols rs=r(s)r_{s}=r^{\prime}\left( s\right) and θs=θ(s)\theta_{s}=\theta^{\prime }\left( s\right) , the above expressions simplify to the following:
[Zαi]=[Ziα]=[rsθs]          (4.119)[Sαβ]=[Sαβ]=[1]          (4.120)[Ziα]=[Ziα]=[rsr2θs]          (4.121)S=1          (4.122)Γαβγ=0          (4.123) [Ni]=[rθsr1rs].          (4.124)\begin{aligned}\left[ Z_{\alpha}^{i}\right] & =\left[ Z^{i\alpha}\right] =\left[ \begin{array} {c} r_{s}\\ \theta_{s} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.119\right)\\\left[ S_{\alpha\beta}\right] & =\left[ S^{\alpha\beta}\right] =\left[ 1\right]\ \ \ \ \ \ \ \ \ \ \left(4.120\right)\\\left[ Z_{i\alpha}\right] & =\left[ Z_{i}^{\alpha}\right] =\left[ \begin{array} {c} r_{s}\\ r^{2}\theta_{s} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.121\right)\\\sqrt{S} & =1\ \ \ \ \ \ \ \ \ \ \left(4.122\right)\\\Gamma_{\alpha\beta}^{\gamma} & =0\ \ \ \ \ \ \ \ \ \ \left(4.123\right)\\\ \left[ N^{i}\right] & =\left[ \begin{array} {c} r\theta_{s}\\ -r^{-1}r_{s} \end{array} \right] .\ \ \ \ \ \ \ \ \ \ \left(4.124\right)\end{aligned}
Finally, for a curve that represents the graph of a function r=r(θ)r=r\left( \theta\right) , we have
[Zαi]=[rθ1]          (4.125)[Ziα]=[rθr2]          (4.126)[Sαβ]=[rθ2+r2]          (4.127)[Sαβ]=[1rθ2+r2].          (4.128)S=rθ2+r2          (4.129)[Ziα]=1rθ2+r2[rθ1]          (4.130)[Ziα]=1rθ2+r2[rθr2]          (4.131)Γ111=rθ(r+rθθ)rθ2+r2          (4.132)[Ni]=1rθ2+r2[rr1rθ]          (4.133)\begin{aligned}\left[ Z_{\alpha}^{i}\right] & =\left[ \begin{array} {c} r_{\theta}\\ 1 \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.125\right)\\\left[ Z_{i\alpha}\right] & =\left[ \begin{array} {c} r_{\theta}\\ r^{2} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.126\right)\\\left[ S_{\alpha\beta}\right] & =\left[ r_{\theta}^{2}+r^{2}\right]\ \ \ \ \ \ \ \ \ \ \left(4.127\right)\\\left[ S^{\alpha\beta}\right] & =\left[ \frac{1}{r_{\theta}^{2}+r^{2} }\right] .\ \ \ \ \ \ \ \ \ \ \left(4.128\right)\\\sqrt{S} & =\sqrt{r_{\theta}^{2}+r^{2}}\ \ \ \ \ \ \ \ \ \ \left(4.129\right)\\\left[ Z^{i\alpha}\right] & =\frac{1}{r_{\theta}^{2}+r^{2}}\left[ \begin{array} {c} r_{\theta}\\ 1 \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.130\right)\\\left[ Z_{i}^{\alpha}\right] & =\frac{1}{r_{\theta}^{2}+r^{2}}\left[ \begin{array} {c} r_{\theta}\\ r^{2} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.131\right)\\\Gamma_{11}^{1} & =\frac{r_{\theta}\left( r+r_{\theta\theta}\right) }{r_{\theta}^{2}+r^{2}}\ \ \ \ \ \ \ \ \ \ \left(4.132\right)\\\left[ N^{i}\right] & =\frac{1}{\sqrt{r_{\theta}^{2}+r^{2}}}\left[ \begin{array} {r} r\\ -r^{-1}r_{\theta} \end{array} \right]\ \ \ \ \ \ \ \ \ \ \left(4.133\right)\end{aligned}
Exercise 4.1Calculate all forms of the shift tensor and the covariant metric tensor SαβS_{\alpha\beta} for a sphere of radius RR described in cylindrical ambient coordinates r,θ1,zr,\theta_{1},z by the equations
r(θ,φ)=Rsinθ          (4.134)θ1(θ,φ)=φ          (4.135)z(θ,φ)=Rcosθ.          (4.136)\begin{aligned}r\left( \theta,\varphi\right) & =R\sin\theta\ \ \ \ \ \ \ \ \ \ \left(4.134\right)\\\theta_{1}\left( \theta,\varphi\right) & =\varphi\ \ \ \ \ \ \ \ \ \ \left(4.135\right)\\z\left( \theta,\varphi\right) & =R\cos\theta.\ \ \ \ \ \ \ \ \ \ \left(4.136\right)\end{aligned}
Confirm that SαβS_{\alpha\beta} agrees with our earlier analyses.
Exercise 4.2Calculate all forms of the shift tensor and the covariant metric tensor SαβS_{\alpha\beta} for a cylinder of radius RR described in cylindrical ambient coordinates r,θ1,z1r,\theta_{1},z_{1} by the equations
r(θ,z)=R          (4.137)θ1(θ,z)=θ          (4.138)z1(θ,z)=z.          (4.139)\begin{aligned}r\left( \theta,z\right) & =R\ \ \ \ \ \ \ \ \ \ \left(4.137\right)\\\theta_{1}\left( \theta,z\right) & =\theta\ \ \ \ \ \ \ \ \ \ \left(4.138\right)\\z_{1}\left( \theta,z\right) & =z.\ \ \ \ \ \ \ \ \ \ \left(4.139\right)\end{aligned}
Confirm that SαβS_{\alpha\beta} agrees with our earlier analyses.
Exercise 4.3Calculate all forms of the shift tensor and the covariant metric tensor SαβS_{\alpha\beta} for a cylinder of radius RR described in spherical ambient coordinates r,θ1,φr,\theta_{1},\varphi by the equations
r(θ,z)=R2+z2          (4.140)θ1(θ,z)=arctanRz          (4.141)φ(θ,z)=θ.          (4.142)\begin{aligned}r\left( \theta,z\right) & =\sqrt{R^{2}+z^{2}}\ \ \ \ \ \ \ \ \ \ \left(4.140\right)\\\theta_{1}\left( \theta,z\right) & =\arctan\frac{R}{z}\ \ \ \ \ \ \ \ \ \ \left(4.141\right)\\\varphi\left( \theta,z\right) & =\theta.\ \ \ \ \ \ \ \ \ \ \left(4.142\right)\end{aligned}
Confirm that SαβS_{\alpha\beta} agrees with our earlier analyses.
Exercise 4.4Explain why the transposes of the matrices [Ziα]\left[ Z_{i\alpha}\right] and [Ziα]\left[ Z_{i}^{\alpha}\right] have the same null space.
Exercise 4.5Calculate the components NiN^{i} of the unit normal to the sphere of radius RR by finding a nonzero vector in the null space of the matrix
[Zαi]=[Ziα]=[RcosθcosφRsinθsinφRcosθsinφRsinθcosφRsinθ0](4.2)\left[ Z_{\alpha}^{i}\right] =\left[ Z_{i\alpha}\right] =\left[ \begin{array} {ll} \phantom{-} R\cos\theta\cos\varphi & -R\sin\theta\sin\varphi\\ \phantom{-} R\cos\theta\sin\varphi & \phantom{-} R\sin\theta\cos\varphi\\ -R\sin\theta & 0 \end{array} \right] \tag{4.2}
and normalizing it to 11.
Exercise 4.6Use matrix algebra to calculate the elements of the surface Christoffel symbol Γαβγ\Gamma_{\alpha\beta}^{\gamma} on the sphere of radius RR by considering the cases α=1\alpha=1 and α=2\alpha=2 separately.
Exercise 4.7Use matrix algebra to calculate the elements of the surface Christoffel symbol Γαβγ\Gamma_{\alpha\beta}^{\gamma} on the sphere of radius RR by considering the cases γ=1\gamma=1 and γ=2\gamma=2 separately.
Exercise 4.8Fill in the details of the calculation in Section 4.3.
Exercise 4.9Repeat the calculation in Section 4.3 in cylindrical ambient components.
Exercise 4.10Derive the equation
Γ111=x(γ)x(γ)+y(γ)y(γ)x(γ)2+y(γ)2(4.88)\Gamma_{11}^{1}=\frac{x^{\prime}\left( \gamma\right) x^{\prime\prime}\left( \gamma\right) +y^{\prime}\left( \gamma\right) y^{\prime\prime}\left( \gamma\right) }{x^{\prime}\left( \gamma\right) ^{2}+y^{\prime}\left( \gamma\right) ^{2}} \tag{4.88}
in two ways. First, by utilizing the formula
Γαβγ=ZiγZαiSβ,(3.126)\Gamma_{\alpha\beta}^{\gamma}=Z_{i}^{\gamma}\frac{\partial Z_{\alpha}^{i} }{\partial S^{\beta}}, \tag{3.126}
and, second, by utilizing the formula
Γβγα=12Sαω(SωβSγ+SωγSβSβγSω).(2.57)\Gamma_{\beta\gamma}^{\alpha}=\frac{1}{2}S^{\alpha\omega}\left( \frac{\partial S_{\omega\beta}}{\partial S^{\gamma}}+\frac{\partial S_{\omega\gamma}}{\partial S^{\beta}}-\frac{\partial S_{\beta\gamma}}{\partial S^{\omega}}\right) . \tag{2.57}
Exercise 4.11Repeat the previous exercise for the equation
Γ111=rrγθγ2+rγrγγ+r2θγθγγrγ2+r2θγ2(4.117)\Gamma_{11}^{1}=\frac{rr_{\gamma}\theta_{\gamma}^{2}+r_{\gamma}r_{\gamma \gamma}+r^{2}\theta_{\gamma}\theta_{\gamma\gamma}}{r_{\gamma}^{2}+r^{2} \theta_{\gamma}^{2}} \tag{4.117}
except note that, in this case, you will need to use the equation
Γαβγ=ΓijkZαiZβjZkγ+ZiγZαiSβ.(3.125)\Gamma_{\alpha\beta}^{\gamma}=\Gamma_{ij}^{k}Z_{\alpha}^{i}Z_{\beta}^{j} Z_{k}^{\gamma}+Z_{i}^{\gamma}\frac{\partial Z_{\alpha}^{i}}{\partial S^{\beta }}. \tag{3.125}
Exercise 4.12Show that the surface Laplacian on a sphere with radius RR is given by
ααF=1R2sinθθ(sinθFθ)+1R2sin2θ2Fφ2.(4.143)\nabla_{\alpha}\nabla^{\alpha}F=\frac{1}{R^{2}\sin\theta}\frac{\partial }{\partial\theta}\left( \sin\theta\frac{\partial F}{\partial\theta}\right) +\frac{1}{R^{2}\sin^{2}\theta}\frac{\partial^{2}F}{\partial\varphi^{2}}.\tag{4.143}
Exercise 4.13Show that the surface Laplacian on a cylinder with radius RR is given by
ααF=1R22Fθ2+2Fz2.(4.144)\nabla_{\alpha}\nabla^{\alpha}F=\frac{1}{R^{2}}\frac{\partial^{2}F} {\partial\theta^{2}}+\frac{\partial^{2}F}{\partial z^{2}}.\tag{4.144}
Exercise 4.14Show that the surface Laplacian on a torus with radii RR and rr is given by
ααF=1(R+rcosφ)22Fθ2+1r2(R+rcosφ)φ((R+rcosφ)Fφ).(4.145)\nabla_{\alpha}\nabla^{\alpha}F=\frac{1}{\left( R+r\cos\varphi\right) ^{2} }\frac{\partial^{2}F}{\partial\theta^{2}}+\frac{1}{r^{2}\left( R+r\cos \varphi\right) }\frac{\partial}{\partial\varphi}\left( \left( R+r\cos\varphi\right) \frac{\partial F}{\partial\varphi}\right) .\tag{4.145}
Exercise 4.15Show that the surface Laplacian on the surface of a revolution whose profile is described by a function r(z)r\left( z\right) is given by
ααF=1r(z)1+r(z)2z(r(z)1+r(z)2Fz)+1r(z)22Fθ2.(4.146)\nabla_{\alpha}\nabla^{\alpha}F=\frac{1}{r\left( z\right) \sqrt{1+r^{\prime }\left( z\right) ^{2}}}\frac{\partial}{\partial z}\left( \frac{r\left( z\right) }{\sqrt{1+r^{\prime}\left( z\right) ^{2}}}\frac{\partial F}{\partial z}\right) +\frac{1}{r\left( z\right) ^{2}}\frac{\partial^{2} F}{\partial\theta^{2}}.\tag{4.146}
Send feedback to Pavel